Kurucz/Linelists, from http://kurucz.harvard.edu/linelists.html gf0400new.100 atomic line data from 300 to 400 nm gf0500new.100 atomic line data from 400 to 500 nm gf0600new.100 atomic line data from 500 to 600 nm gf0800new.100 atomic line data from 600 to 800 nm gf1200new.100 atomic line data from 800 to 1200 nm Linelists with names of the form GF* have the following 160 column format: 1 81 160 +++++++++++^^^^^^^++++++^^^^^^^^^^^^+++++^++++++++++^^^^^^^^^^^^+++++^++++++++++^^^^^^++++++^^^^^^++++^^++^^^++++++^^^++++++^^^^^+++++^+^+^+^+++^^^^^+++++^^^^^^ 800.7110 0.116 27.00 45924.947 3.5 (3F)5s e2F 33439.661 4.5 (3F)4p y2G 8.19 -5.38 -7.59K88 0 0 59-2.584 59 0.000 104 -77F6 -5 0 1140 1165 0 wl(nm) log gf elem E(cm-1) J label E'(cm-1) J' label' log log log ref NLTE iso log iso log hyper F F' glande iso code Gamma Gamma Gamma level hyper f iso frac shift(mK) ^ glande'shift [char*28 level descriptor ][char*28 level descriptor ] rad stark vdW numbers E E' ^abc (x1000) (mA) I*1^char*3 continuing codes 81 160 ^^^^^^++++++^^^^^^++++^^++^^^++++++^^^++++++^^^^^+++++^+^+^+^+++^^^^^+++++^^^^^^ 8.19 -5.38 -7.59K88 0 0 59-2.584 59 0.000 104 -77F6 -5 0 1140 1165 0 log log log ref NLTE iso log iso log hyper F F' glande iso Gamma Gamma Gamma level hyper f iso frac shift(mK) ^ glande'shift rad stark vdW numbers E E' ^abc (x1000) (mA) I*1^char*3 codes FORMAT(F11.4,F7.3,F6.2,F12.3,F5.2,1X,A10,F12.3,F5.2,1X,A10, 3F6.2,A4,2I2,I3,F6.3,I3,F6.3,2I5,1X,A1,A1,1X,A1,A1,i1,A3.2I5,I6) 1 wavelength (nm) air above 200 nm F11.4 2 log gf F7.3 3 element code = element number + charge/100. F6.2 4 first energy level in cm-1 F12.3 5 J for first level F5.1 blank for legibility 1X 6 label field for first level A10 7 second energy level in cm-1 F12.3 (negative energies are predicted or extrapolated} 8 J for second level F5.1 blank for legibility 1X 9 label field for second level A10 10 log of radiative damping constant, Gamma Rad F6.2 or F6.3 11 log of stark damping constant/electron number. Gamma Stark F6.2 or F6.3 12 log of van der Waals damping constant/neutral hydrogen number, Gamma van der Waals F6.2 or F6.3 13 reference that can be expanded in subdirectory LINES A4 14 non-LTE level index for first level I2 15 non-LTE level index for second level I2 16 isotope number I3 17 hyperfine component log fractional strength F6.3 18 isotope number (for diatomics there are two and no hyperfine) I3 19 log isotopic abundance fraction F6.3 20 hyperfine shift for first level in mK to be added to E I5 21 hyperfine shift for second level in mK to be added to E' I5 the symbol "F" for legibilty 1X 22 hyperfine F for the first level I1 23 note on character of hyperfine data for first level: z none, ? guessed A1 the symbol "-" for legibility 1X 24 hyperfine F' for the second level I1 25 note on character of hyperfine data for second level: z none, ? guessed A1 26 1-digit code, sometimes for line strength classes I1 27 3-character code such as AUT for autoionizing A3 28 lande g for first level times 1000 I5 29 lande g for second level times 1000 I5 30 isotope shift of wavelength in mA Molecule lists in .LINESMOL have the format 1 70 ++++++++++^^^^^^^+++++^^^^^^^^^^+++++^^^^^^^^^^^++++^++^+^^^+^^+^+++^^ 433.0318 -3.524 19.5-10563.271 20.5 -33649.772 106X02F2 A02F1 13 wl(nm) log gf J E(cm-1) J' E'(cm-1) code V V' iso label label' FORMAT(F10.4.F7.3,F5.1,F10.3,F5.1,F11.3,I4,A1,I2,A1,I1,3X,A1,I2,A1,I1,3X,I2) The code for the diatomic molecules is two 2-digit element numbers in ascending order. The labels consist of the electronic state, the vibrational level, the lambda-doubling component, and the spin state. Sometimes two characters are required for the electronic state and the format becomes ,A2,I2,A1,i1,2X,. Negative energies are predicted or extrapolated. A sample program RMOLEC.FOR for reading the lines is given in .LINES. The molecular lines can be rewritten in the atomic format and merged with the atomic lines but I have not done it. They can also be rewritten in binary so they can be read quickly. A program MOLBIN.FOR for that is given in .LINES.