Design Documentation
Release 8.0

The AMUSE Team

May 23, 2013

CONTENTS

Introduction

1.1 AMUSE . . . e e 1
Architecture Overview 3
2.1 Layerso e e 3
Coupling Codes 11
Python Packages 13
Datamodel 15
5.1 Alldataisstored N SELS v v it e e e e e e e e 15
5.2 Like the relation database model 15
5.3 ODbJECtS are VIEWS . o . v v v v v o i e 16
5.4 Objectshaveakey i e e e e e e e e 17
5.5 Setsuse Storage Models e 17
5.6 Selectionsonthe Set e e e e e e e e 17
MPI interface 19

CHAPTER
ONE

INTRODUCTION

In this document we will describe the high level design of AMUSE. During the development period of AMUSE
this document will be a “Work in Progress”. It will be updated to state latests idead about the design and reflect
the current implementation. More detailed documentation can be found in the reference documentation

1.1 AMUSE

AMUSE combines existing astrophysical numerical codes into a single system.

1.1.1 Goal

To develop a toolbox for performing numerical astrophysical experiments. The toolbox provides:
* A standard way of input and output of astrophysical data.
* Support for set-up and management of numerical experiments.
* A unique method to couple a wide variety of physical codes

* A legacy set of standard, proven codes. These codes will be integrated into AMUSE as modules. Each
module can be used stand-alone or in combination with other modules

* A standard way for adding new modules to AMUSE.
* Examples to show the use of each module and possible couplings between the modules.

¢ Documentation containing introduction, howto’s and reference documents.

1.1.2 Development

AMUSE development is planned to take place in a 2.5 year period. AMUSE is developed at the Leiden Observa-
tory. The Leiden Observatory is a faculty of the Leiden University in the Netherlands. Funding is provided by a
NOVA grant.

Design Documentation, Release 8.0

2 Chapter 1. Introduction

CHAPTER
TWO

ARCHITECTURE OVERVIEW

2.1 Layers

The AMUSE architecture is based on a layered design with 3 layers. The highest layer is a python script, written
for a single problem or set of problems. The next layer contains the AMUSE code, this layer provides a library
of objects and function to use in the python script. The last layer contains all the existing or legacy codes. In this
layer the physical models are implemented.

Each layer builds upon a lower layer, adding functionality or ease of use to the previous layer: Each layer has a

Layer 1
User Script
Layer 2
AMUSE Library
Layer 3

Community Codes

Figure 2.1: The 3 layers in AMUSE

different role in the AMUSE architecture:

1. User Script layer. The code in this layer implements a specific physical problem or set of problems. This
layer contains the example scripts and scripts written by the user. This layer is conceptually comparable to

Design Documentation, Release 8.0

a User Interface layer in applications with a GUI. Coupling two or more codes happens in this layer (with
the help of support classes from the AMUSE Library Layer.

2. AMUSE Library layer. This layer provides an object oriented interface on top of the legacy codes. It also
provides a library of functionalities, such as unit handling and data conversion. The role of this layer is very
generic, it is not specific for one problem or for one physical domain.

3. Community Codes layer. This layer defines the interfaces to the community codes and contains the actual
codes. It provides process management for the community codes and functional interfaces to these. The
code in this layer is generic in respect to problems, but specific for different physical domains.

The following sections contain a detailed explanation of the layers, starting with the lowest layer to the highest.
Some details are further worked out in other chapters or in the reference manual.

2.1.1 Community codes layer

The Community Codes layer contains the actual applications and the functionality to communicate with these
applications. This layer exposes every community code as a set of functions. These functions are grouped in one
class per code.

The AMUSE framework code and the community codes are designed to be run as separate applications. The
AMUSE framework code consists of a python script and the AMUSE library. The community codes consist of
the original code-base of a scientific code extended with a new main application that handles messages send to
it from the python library. Function calls into the community codes are send via a message passing framework
to the actual running codes. The number of applications started and the machines on which these run can all be

Application Application

Python Interfaces Message Passing Framework Community Code

Figure 2.2: The AMUSE script and community codes are separate applications. The application communicate
using a message passing framework

set dynamically in AMUSE. Depending on the problem a researcher can run all of AMUSE on a single desktop
computer or in a mixed environment with clusters of computers. Every AMUSE run starts with one python script.
This script can in turn start a number of different community codes (as separate applications). A complete run can
consist of multiple applications running in parallel or in sequence and managed by one python script.

4 Chapter 2. Architecture Overview

Design Documentation, Release 8.0

Application, running on a GPU

Gravitational Dynamics

Application, running on a cluster

Hydrodynamics 4

Hydrodynamics 3

Hydrodynamics |—————pp»| Hydrodynamics 2

Hydrodynamics 1

Application

Amte i Stellar Evolution 1

Python Script Application

[\

Stellar Evolution 2

Application

Stellar Evolution 3

Application

Stellar Evolution 4

2.1. Layers

Design Documentation, Release 8.0

Message passing

The amuse framework interacts with legacy codes via a message passing framework. Function calls in the python
scripts are translated to messages and these messages are send to the community codes using the message passing
framework . The community codes wait for message events and will decode the message upon arrival and perform
the requested function. The results will be send back using a similar message.

script:Script interface:Interface I mpi:MessagePassingFramwork main:MainLoop code:Code
evolvel)

send messageirequest)

, recieve messagelreguest)

evolvel)

wait_for_result{)

send messagelanswer)

recieve message(anwser)

2.1.2 AMUSE Library layer

The Library layer is responsible for providing an object oriented interface to the community codes. It also
provides extra functionality to help write a user script, such as file input and output of common file formats and
unit conversions. These extra functionalities can be used independent of the community codes.

Every community code has a low-level interface (defined in the community interface layer) and an object-oriented
interface. The low-level interface is defined as as set of functions. The object-oriented interface uses these
functions and combines these with models for state-transitions, units and data sets to provide an interface that is
easier to use (less error prone) and easier to couple with other codes.

Object Oriented Interface
Exceptions State Code Interface Unit Conversion Legacy Interface
Data Model Support
Grid Points Particles Community Code Interface Units Input/Ouput

Model of a community code

The community codes of every module in all physical domains are modelled using the same template. The
template consists of attributes and wrappers. Attributes provide a common interface for sub-parts of the code, for

6 Chapter 2. Architecture Overview

Design Documentation, Release 8.0

example the particles attribute provides an interface to add, update and remove the particles in a code. Attributes
combine several functions in a legacy interface into one object. Wrappers are defined on top of the community
functions and add functionality to existing methods. For example for every method the units of the arguments and
return values can be defined in a filter. Wrappers add functionality to individual methods.

Attributes

The template divides the interface object of a code into a number of attributes. Each attribute refers to an object
implementing a specific sub-interface of the code. For example a code can have a parameter attribute, this attribute
implements the ParameterSet sub-interface. The ParameterSet sub-interface defines how to interact with the
parameters of a code (in this case each parameter can be set or queried from the set by name using normal python
attribute access).

The template for all codes is divided into the following sub-interfaces:

parameters Parameters influence how the code works. Parameters are usually set just after creating a code.
Parameters should be read-write or write-only.

properties Properties inform the user about the state of the code. The current model time is a property. Properties
are always read-only.

particle sets Particle sets provide a common interface for a set of particles in the code. A code can have multiple
particle sets defined under different names (for example gas, stars and dark matter)

grids Grids provide access to multi-dimensional data. A code can have multiple grids defined in a hierarchy (for
AMR or SMR codes)

Wrappers

Wrappers decorate a method. Wrappers can do pre- and post-processing of the arguments or decide if a method
can savely be called.

units and error code Defines a unit for each argument of the wrapped method. When called the arguments will
be converted to numbers in the correct unit. The return values will be converted to quantities (numbers with
a unit).

state The state of a code determines which functions are valid to call and how the code can transfer from one state
into another. For example, a code might give incorrect answers if the potential energy is requested before
the particles are entered into the code, the state model will rais an error to inform the script writer of this
problem.

Implementation

The implementation of the object-oriented interface is based on the adaptor pattern. A Community Code Interface
class is adapted to create a class which provides “parameters”, “particle sets/gridpoints” , “methods with units” ,
“properties with units” , “state control” and “Unit conversions for incompatible unit systems”. Each functionality

has the same interface for all codes in the system.

2.1.3 User Script

The final layer is the User Script Layer this layer contains all the scripts written by a researcher for a specific
problem or set of problems. These scripts are always written in python and can use all the functionality provided
by the two lower layers in the AMUSE framework. The scripts don’t need to follow a fixed design.

2.1. Layers 7

Design Documentation, Release 8.0

Community Code Interface f—————pp» Particles or Gridpoints

Parameters

Methods with Units

Properties with Units

State control

Unit conversions for incompatible unit systems

Adaptor

Figure 2.3: A legacy interface is adapted to provide an object oriented interface and more functionality.

8 Chapter 2. Architecture Overview

Design Documentation, Release 8.0

script:Script code:Code I particles:Particles I store:HDFSFileI output:Log I
import_codes()
setup()
setupl) N
add particles(particles) L

Moo 4
loop]
[while time < end_time]
evolve(time) .
update values from{code)
i, get latest valuesi)
kinetic_energy N
printikinetic energy) : _5
R R S oo i
savelparticles) ._5

2.1. Layers

Design Documentation, Release 8.0

10 Chapter 2. Architecture Overview

CHAPTER
THREE

COUPLING CODES

The design for coupling codes in AMUSE is based on providing the same set of functions for every community
code and using these to devise different coupling methods. As the coupling methods are not fixed and can change
on a per problem basis the functions to be very generic. The AMUSE library defines three sets of functions to
support coupling codes:

particle or gridpoint manipulation Most properties of particles (or gridpoints) can be queried and updated dur-
ing the run, providing a direct method of manipulating the data of a community code. Further most codes
support removing and adding particles during the run.

stopping conditions Stopping conditions are designed to interrupt a code during model evolutions. Stopping
conditions are triggered when a code encounters a predefined state (for example a particle escaping out of
the bounding box).

services Services are functions added to a code that use the model of that code to provide data for other codes.
For example a smoothed particle hydrodynamics code can provide the state of the model at any random
point (not just on the particles) which can be used to create a grid from an particle model.

11

Design Documentation, Release 8.0

12 Chapter 3. Coupling Codes

CHAPTER
FOUR

PYTHON PACKAGES

Like all large python projects, the AMUSE source-code is structured in packages, subpackages and modules.
Packages and subpackages are directories in the filesystem and modules are python files (A detailed explanation
can be found in Modules <http://docs.python.org/tutorial/modules.html>). In this chapter the most important
packages are named.

The sourcecode of the AMUSE Code and Legacy Codes layer is combined in one package. The package name
is amuse.

amuse Root package of the AMUSE code, does not contain test files, the build system or the test system.
The amuse and the package is further divided into three subpackages:

amuse.support Contains the code of the AMUSE Code layer. The units system, data io and model and all base
classes can be found in this package.

amuse.legacy Contains the code the Legacy Codes layer. The legacy codes can be found in this package as well
as support code for generating the script to legacy code messaging framework.

amuse.ext Contains extra and/or extension code. For example, making initial data models is not one of the main
functionalities of AMUSE, but it is very useful to include this into the codebase.

13

Design Documentation, Release 8.0

14 Chapter 4. Python Packages

CHAPTER
FIVE

DATAMODEL

5.1 All data is stored in sets

In the datamodel of AMUSE all data are stored in sets. The sets store objects and the values of attributes belonging
to the objects. All objects in a set have the same attributes, but not same values for these attributes.

set attribute a | attribute b attribute z
object 1 value 1.a value 1.b value 1.z
object 2 value 2.a value 2.b value 2.z
objectn value n.a value n.b value n.z

5.2 Like the relation database model

For every object in a set, the set will store the values of the attributes of the object. This model is like a relation
database with Tables (sets in AMUSE), Records (an object in the set) , Columns (an attribute of an object) and

Fields (the value of an attribute of an object).

15

Design Documentation, Release 8.0

AMUSE Model Relation Database Model

Set Table

contains efines tores defines

stores Record Column

Attribute

has

Field

5.3 Objects are views

Objects from a set do not store any values, instead they defer to the set to provide their attribute values. In a sense
these objects are pointers to a location in the set. When comparing to the relational database model an object is
like a cursor. It can be used to access the values of the attributes belonging to the object stored in the set.

Object

pointer to a location in

Set

When a user asks an object for its mass the object will query the set for the stored value and return the answer to
the user.

user:-User object:Object set-5et

mMass

get value of attribute(objectkey, "mass") !D

16 Chapter 5. Datamodel

Design Documentation, Release 8.0

5.4 Objects have a key

The objects in a set can be identified with a unique key. All objects having the same key are seen as the same
object by the AMUSE system. The same object can exist in multiple sets. In each set this object can have a

different value of an attribute or different attributes. Or, in each set a different version of the object can exist.

5.5 Sets use Storage Models

The actual storage of attribute values in a set is provided by a storage model. The set provides the interface to the
script writer, the storage model manages the data. Each storage model must decide how and where to store the
data. All data can be stored in the memory area of the script or in the mememory area of the code or on a file or

in a relational database.

Storage Models

AMUSE Model

7N

In Database

In File

In Code

In Memory

5.6 Selections on the set

The datamodel provides subsets to handle a selection of the objects in a set. When comparing to the relational
database model an subset is like a view. The subset does not store any data, all the data is stored in the original
set. When an attribute is updated in a subset, the attribute is also updated in the original data.

Subset

set

object 2

object m

Original Set
set attribute a attribute b attribute z
object 1 value l.a value 1.b value 1.z
object 2 value 2.a value 2.b value 2.z
object n value n.a value n.b value n.z

5.4. Objects have a key

17

Design Documentation, Release 8.0

18 Chapter 5. Datamodel

CHAPTER
SIX

MPI INTERFACE

The interface between the AMUSE python core and the legacy-codes is based on the MPI framework. Choosing
MPI and not SWIG (or any other direct coupling method) has several advantages:

e MPI is a well-known framework in the astrophysics community. Other coupling methods are less well
known (like SWIG)

* Legacy code does not run in the python space (memory usage, names)
» Multiple instances of the same legacy code can easily be supported (not so in SWIG / f2py couplings)
* Multi-process support taken into account at the start of the project.
* Coupling is much looser.
There are also be some disadvantages:
* Need to define a protocol over MPI

* More “hand-work” needed to couple code. Other frameworks, like SWIG and f2py, generate an interface
based on the appliction code.

* More overhead for every call, slower calls

These disadvantages are mitigated by creating a library that handles most of the coupling details. This library has
a Python, C++ and Fortran version. It implements the protocol and generates hooks to connect with the legacy
codes.

The overhead per call may be an important factor in the speed of the framework. This will be tested during
development of the first codes. It should be possible to limit the overhead by sending a lot of data per call. For
example, setting the properties of a lot of stars in one call. Calling a lot of methods with limited data will be
compared to sending one method with a lot of data.

19

	Introduction
	AMUSE

	Architecture Overview
	Layers

	Coupling Codes
	Python Packages
	Datamodel
	All data is stored in sets
	Like the relation database model
	Objects are views
	Objects have a key
	Sets use Storage Models
	Selections on the set

	MPI interface

