
Installing AMUSE
Release 8.0

The AMUSE Team

May 23, 2013

Contents

1 Obtaining AMUSE ii
1.1 Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1.2 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
1.3 Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Need an account? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Tarball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1.4 Bleeding edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

2 Installation of the prerequisite software iii
2.1 Installing on Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Installing on Ubuntu version > 10.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
MPI2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
HDF5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
FFTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
GSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
GMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
MPFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Python packages in Ubuntu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Python packages with easy_install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
FFTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

2.2 Installing on OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Installing on MAC OS X with MacPorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

2.3 Installing on Arch Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

2.4 Installing on Fedora 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
All in One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

2.5 Installing on Fedora 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
MPI2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
HDF5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
FFTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
GSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
CMake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
GMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
MPFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii



Python packages in Fedora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Python packages with easy_install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

2.6 Installing on RedHat (CentOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Installing on CentOS 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

2.7 Installing on Suse Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Installing on OpenSuse 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

2.8 Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Installation scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Manually installing the prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

3 Installation of the AMUSE software xx
3.1 Configuring the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx
3.2 Building the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
3.3 Testing the build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Real-time testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii
3.4 Running the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

4 Getting started with AMUSE xxiii
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
4.2 Example interactive session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
4.3 Example scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Matplotlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
Gnuplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

4.4 Further documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

5 Configuring AMUSE xxvi
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
5.2 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
5.3 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Sapporo library version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

6 Writing documentation xxviii
6.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii
6.2 Organization of the AMUSE documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii

1 Obtaining AMUSE

1.1 Download

Go to the downloads page.

1.2 Getting started

The first step in getting AMUSE to work is obtaining the AMUSE source code. We advice you to do this even be-
fore installation of the prerequisite software (Installation of the prerequisite software). In the following installation
instructions we assume that you will install AMUSE in a directory /amuse.

1.3 Releases

For the official releases we provide tarballs and subversion repository access (you need an account for the latter).

http://www.amusecode.org/trac/wiki/releases


Need an account?

You can find us on google groups, http://groups.google.com/group/amusecode or on IRC at the #amuse channel
on irc.freenode.net.

Tarball

Obtain the tarball (e.g. amuse-4.0.tar.gz) from the download-site and unpack it in the amuse directory using:

> tar -xf amuse-4.0.tar.gz

this will make an amuse sub-directory amuse-4.0, which we will be referring to as the AMUSE root directory,
e.g.:

./amuse
+-- amuse-4.0

|-- bin
|-- build.py
|-- configure
|-- cuda_self_help
+-- data
|-- doc
|-- lib
|-- Makefile
|-- MANIFEST.in
|-- README.txt
|-- sandbox
|-- setup.py
|-- slowtests
|-- src
|-- support
|-- test
|-- test_results

From here proceed by reading the Installation of the prerequisite software section.

1.4 Bleeding edge

The current development version is available via subversion repository access by issuing the following command:

> svn co http://www.amusecode.org/svn/trunk amuse-svn

This will make an AMUSE root directory with the name “amuse-svn”.

2 Installation of the prerequisite software

2.1 Installing on Ubuntu

Installing on Ubuntu version > 10.10

In this section we asume a default Ubuntu desktop installation.

All

The prerequisites can be installed with a couple of commands on Ubuntu. The only choice to make is between
openmpi and mpich2. Most of our testing is done with MPICH2 but openmpi should also work.

http://groups.google.com/group/amusecode


For openmpi do:

> sudo apt-get install build-essential gfortran python-dev \
libopenmpi-dev openmpi-bin \
libgsl0-dev cmake libfftw3-3 libfftw3-dev \
libgmp3-dev libmpfr4 libmpfr-dev \
libhdf5-serial-dev hdf5-tools \
python-nose python-numpy python-setuptools python-docutils \
python-h5py python-setuptools

> sudo easy_install mpi4py

For mpich2 do:

> sudo apt-get install build-essential gfortran python-dev \
mpich2 libmpich2-dev \
libgsl0-dev cmake libfftw3-3 libfftw3-dev \
libgmp3-dev libmpfr4 libmpfr-dev \
libhdf5-serial-dev hdf5-tools \
python-nose python-numpy python-setuptools python-docutils \
python-h5py python-setuptools

> sudo easy_install mpi4py

Note: Please make sure not to install mpich2 and openmpi together. When both openmpi and mpich2 are installed
strange errors will occur and AMUSE will not work. If you see both installed please remove both and install one.

Installing on Ubuntu 9.04

In this section we asume a default Ubuntu desktop installation.

Python

Ubuntu comes with python2.6 pre-installed, you can check if python is installed by doing:

> python --version
Python 2.6.2

If this failes with an error or a version before 2.6, please install python first(the package is called python2.6).
You also need the python2.6-dev development package. To install it, do:

> sudo apt-get install python2.6-dev

GCC

By default, Ubuntu does not install a fortran 90 or a C++ compiler. We suggest using gfortran and g++. These
compilers are installed with the build-essential and the gfortran package. To install these, do:

> sudo apt-get install build-essential gfortran

MPI2

Ubuntu does not provide installation packages for MPICH2. You can build MPICH2 by hand (a good HOWTO
can be found at https://wiki.ubuntu.com/MpichCluster). Or, you can download and install pre-build packages from
the MPICH2 site (http://www.mcs.anl.gov/research/projects/mpich2/index.php).

If you prefer OpenMpi over MPICH2, you can install openmpi from the Ubuntu packages. To install the openmpi
packages, do:

https://wiki.ubuntu.com/MpichCluster
http://www.mcs.anl.gov/research/projects/mpich2/index.php


> sudo apt-get install libopenmpi-dev openmpi-bin

HDF5

Amuse can work with HDF5 versions 1.6.* and 1.8.3. Ubuntu 9.04 comes with HDF5 version 1.6.6. To install it,
do:

> sudo apt-get install libhdf5-serial-dev hdf5-tools

FFTW

On Ubuntu, FFTW can be installed with:

> sudo apt-get install libfftw3 libfftw3-dev libfftw3-doc

GSL

On Ubuntu, GSL can be installed with:

> sudo apt-get install libgsl0 libgsl0-dev

CMake

CMake is used to build EVTwin. On Ubuntu, CMake can be installed with:

> sudo apt-get install cmake

GMP

GMP is required for Adaptb. On Ubuntu, GMP can be installed with:

> sudo apt-get install libgmp3 libgmp3-dev

MPFR

MPFR is required for Adaptb. On Ubuntu, MPFR can be installed with:

> sudo apt-get install libmpfr4 libmpfr-dev

Python packages in Ubuntu

Ubuntu comes with python packages for nose and numpy. You also need the setuptools package to be able to
install the mpi4py and h5py software. To install these , do:

> sudo apt-get install python-nose python-numpy python-setuptools python-docutils

Python packages with easy_install

The mpi4py and h5py can be installed with the easy_install command:

> sudo easy_install mpi4py
> sudo easy_install h5py



Installing on Ubuntu 9.10

In this section we asume a default Ubuntu desktop installation. This installation is for the most part the same as
for Ubuntu 9.04, see previous section.

The development packages of python are needed, to install these do:

> sudo apt-get install python-dev

FFTW

For 9.10 the FFTW package name is fftw3 and not libfftw3, FFTW can be installed with:

> sudo apt-get install fftw3 fftw3-dev fftw3-doc

2.2 Installing on OS X

Installing on MAC OS X with MacPorts

In this section we asume a clean MacPorts installation. The MacPorts build system will build every package from
source so installation will be slow. The packages in MacPorts support different variants, each variant is build
differently. The default variant of most packages does not support fortran and AMUSE needs fortran and fortran
enabled packages. Below, with all installation commands we will specify the variant. AMUSE is tested with the
gcc45 variant, gcc43 and gcc44 have been known to work also. Below, we will use gcc45.

Note: If you want to use a different fortran compiler (ifort), you are better of using the install.py script in the
doc/install directory.

Note: Make sure you have a recent MacPorts installation. You need at least an up to date MacPorts 1.8.6 or later.

Note: If you are unsure of your installation you can uninstall and clear the packages with:

port uninstall py26-docutils py26-nose py26-mpi4py py26-h5py py26-numpy hdf5-18 fftw-3 gsl openmpi python26

or, for python 2.7:

port uninstall py27-docutils py27-nose py27-mpi4py py27-h5py py27-numpy hdf5-18 fftw-3 gsl openmpi python27

To make a clean install of MacPorts, please remove the MacPorts directory and read the guide at:
http://guide.macports.org/

All in one

You can install all the packages described below in one go with:

> sudo port install gcc45

> sudo port install python27
> sudo port install openmpi +gcc45
> sudo port install fftw-3 +gcc45
> sudo port install hdf5-18 gsl cmake gmp mpfr
> sudo port install py27-numpy py27-h5py py27-nose py27-docutils +gcc45

> sudo port install py27-mpi4py +openmpi

http://guide.macports.org/


> sudo port install py27-matplotlib +gcc45

After installing you will need to configure the code with the following line:

> ./configure --with-fftw=/opt/local \
MPICXX=openmpicxx MPICC=openmpicc MPIFC=openmpif90 \
FC=gfortran-mp-4.5 PYTHON=python2.7 \
PREFIX=/opt/local

Note: The --with-fftw option will ensure that fftw is found in /opt/local and not in any other location
on OS X. Often, incompatible versions of fftw will be installed in /usr/include or /usr/local/inlude.
These versions may have the wrong processor type (32 vs 64bits) or not contain a fortran API. For both cases
compiling Fi will fail. In case the configure script does not pick the wanted fftw directories, you can edit the
config.mk file to point to the right version.

Note: The PREFIX variable will make sure some support libraries for community codes (gsl, gmp and mpfr) are
found in /opt/local.

Note: Please, make sure you have no other compile variables specified (like CC or CXX or CFLAGS), unless you
have customized MacPorts in any way. Some variable settings will likely give compile errors for the community
codes.

For example, BHTree is compiled with openmpicxx and $CXX. The command in the CXX variable must be
compatible with openmpicxx (you can do openmpicxx --show to get the command openmpicxx is using)

Note: The version of openmpi in macports (1.5.5 and before) does not handle MPI_IN_PLACE calls correctly
for Fortran codes. Unfortunately, this means that Capreole, PhiGrape and Mocassin will not work with more
than one worker on the mac. Also, MpiAmrVac, will give incorrect results in any case.

If you want to run these codes on OS X, please use the amuse install scripts and make sure macports is not on your
path.

Warning: With macports, the nose package will not install nosetests under it’s standard name. It will be
named nosetests-<python-version>. So for python2.7 you’ll need to use nosetests-2.7

> nosetests-2.7
............................................

OK

GCC

By default MacPorts uses the XCode compilers, these compilers have no support for fortran, a MacPorts gcc
compiler set needs to be installed. We suggest installing gcc 4.5:

> sudo port install gcc45

Note: If you have installed a different version of gcc, you need to select a different variant of the packages
below. To select a different variant replace +gcc44 with +gcc43, +gcc42 or any other version matching your gcc
installation. Note, apple-gcc versions will not work, these do not support fortran.



Python

MacPorts supports several python versions in different variants, we will install the python27 versions

> sudo port install python27 +gcc45

MPI2

MacPorts provides packages for mpich2 and openmpi. Although you can probably install both, this is not recom-
mended. We suggest you install openmpi.

To install openmpi, do:

> sudo port install openmpi +gcc45

HDF5

Amuse can work with HDF5 versions 1.6.* and 1.8.3. MacPorts comes with HDF5 version 1.8.*. To install it, do:

> sudo port install hdf5-18 +gcc45

FFTW-3

MacPorts comes with a FFTW and FFTW-3 package, for AMUSE we need FFTW-3. FFTW-3 can be installed
with:

> sudo port install fftw-3 +gcc45

GSL

GSL is used to build Gadget2, GSL can be installed with:

> sudo port install gsl +gcc45

CMake

CMake is used to build EVTwin, CMake can be installed with:

> sudo port install cmake

GMP

GMP is required for Adaptb. With MacPorts, GMP can be installed with:

> sudo port install gmp

MPFR

MPFR is required for Adaptb. With MacPorts, MPFR can be installed with:

> sudo port install mpfr



Python packages

By this point all libraries and frameworks are installed. We can now install python packages (some depend on the
installed libraries):

> sudo port install py27-numpy py27-h5py py27-nose py27-docutils +gcc45

If you installed openmpi in the MPI2 step you need to set the “openmpi” variant for “py27-mpi4py”:

> sudo port install py27-mpi4py +openmpi

Matplotlib

Matplotlib is not required but is very useful for creating graphics, you can install it with:

> sudo port install py27-matplotlib +gcc45

Note: Macports will install the compilers under non standard names. To use the right compilers you need to
specify these during the configure stage of AMUSE.

See the output for configure --help for a list of all environment variables you can set.

If you installed openmpi you need to specify the mpi compilers like so:

./configure MPICXX=openmpicxx MPICC=openmpicc MPIFC=openmpif90

2.3 Installing on Arch Linux

In this section we asume a default Arch Linux installation.

All

The prerequisites can be installed with a couple of commands on Arch Linux.

To install the prerequisites do (for base-devel select all members):

> sudo pacman -Syu base-devel curl gcc-fortran gettext zlib

Install python and dependencies:

> sudo pacman -Syu python2 python2-numpy \
hdf5 docutils openmpi
python2-mpi4py python2-nose\
fftw gsl cmake gmp mpfr

To install h5py, first install distribute and then run easy_install:

> sudo pacman -Syu python2-distribute

> sudo easy_install-2.7 h5py

2.4 Installing on Fedora 18

In this section we asume a basic install of Fedora 18 installation.



All in One

The prerequisites can be installed with a couple of commands on Fedora.

For mpich2 do:

> sudo yum install make gcc gcc-c++ gcc-gfortran\
cmake zlib-devel\
mpich2 mpich2-devel\
hdf5 hdf5-devel\
fftw fftw-devel\
gsl gsl-devel\
gmp gmp-devel\
mpfr mpfr-devel\
python-nose numpy numpy-f2py\
h5py\
python-setuptools python-setuptools-devel\
mpi4py-mpich2\
python-matplotlib

Note: This line will also install matplotlib, this package is used for all plotting in AMUSE. If you do not need
any plotting you can leave it out.

After installing mpich2, you need to activate it using the ‘module’ command:

> module load mpi/mpich2-$(uname -i)

Note: We recommend to put the module activation script in your .bashrc or .cshrc file.

For openmpi do:

> sudo yum install make gcc gcc-c++ gcc-gfortran\
cmake zlib-devel\
openmpi openmpi-devel\
hdf5 hdf5-devel\
fftw fftw-devel\
gsl gsl-devel\
gmp gmp-devel\
mpfr mpfr-devel\
python-nose numpy numpy-f2py\
h5py\
python-setuptools python-setuptools-devel\
mpi4py-openmpi\
python-matplotlib

After installing openmpi, you need to activate it using the ‘module’ command:

> module load mpi/openmpi-$(uname -i)

Note: On Fedora you can install both mpich2 and openmpi, the module command will keep manage these
separate installation, so no conflict will exists. If you change between implementation, you will need to recompile
the amuse community codes with:

> make clean; make

2.5 Installing on Fedora 11

In this section we asume a live-cd install of Fedora 11 installation.



Python

Fedora comes with python2.6 pre-installed, you can check if python is installed by doing:

> python --version
Python 2.6.2

If this failes with an error or a version before 2.6, please install python first(the package is called python). You
also need the python-devel development package. To install it, do:

> sudo yum install python-devel

GCC

By default, Fedora does not install a fortran 90 or a C++ compiler. We suggest using gfortran and g++. These
compilers are installed with the gcc, gcc-c++ and the gcc-gfortran packages. To install these, do:

> sudo yum install gcc gcc-c++ gcc-gfortran

MPI2

Fedora comes with packages for MPICH2 and Openmpi.

To install MPICH2, do:

> sudo yum install mpich2 mpich2-devel

If you prefer OpenMpi over MPICH2, you can install openmpi from the Fedora yum database. To install the
openmpi packages, do:

> sudo yum install openmpi openmpi-devel

HDF5

Amuse can work with HDF5 versions 1.6.* and 1.8.3. Fedora 11 has a package with HDF5 version 1.8.3. To
install it, do:

> sudo yum install hdf5 hdf5-devel

FFTW

On Fedora, FFTW can be installed with:

> sudo yum install fftw fftw-devel

GSL

On Fedora, GSL can be installed with:

> sudo yum install gsl gsl-devel

CMake

CMake is used to build EVTwin. On Fedora, CMake can be installed with:



> sudo yum install cmake

GMP

GMP is required for Adaptb. On Fedora, GMP can be installed with:

> sudo yum install gmp

MPFR

MPFR is required for Adaptb. On Fedora, MPFR is currently included in the gmp package. So, if you have not
already done so, MPFR can be installed with:

> sudo yum install gmp

Python packages in Fedora

Fedora comes with python packages for nose and numpy. You also need the setuptools package to be able to
install the mpi4py and h5py software. To install these , do:

> sudo yum install python-nose numpy numpy-f2py \
python-setuptools python-setuptools-devel

Python packages with easy_install

The mpi4py, h5py and docutils can be installed with the easy_install command:

> sudo easy_install mpi4py
> sudo easy_install h5py
> sudo easy_install docutils

2.6 Installing on RedHat (CentOS)

Installing on CentOS 6

In this section we asume a minimal CentOS 6 installation.

All

The prerequisites can be installed with a couple of commands on CentOS 6.

To install the prerequisites do (for base-devel select all members):

> sudo yum install make gcc gcc-c++ gcc-gfortran \
cmake zlib-devel\
openmpi openmpi-devel \
fftw fftw-devel \
gsl gsl-devel gmp

After installing openmpi, you need to activate it using the ‘module’ command:

> module load openmpi-$(uname -i)



Note: We recommend to put the openmpi module activation script in your .bashrc or .cshrc file.

Install python and dependencies:

> sudo yum install python-devel \
docutils python-nose \
numpy numpy-f2py\
python-docutils

To install hdf5 and docutils first install an additional rpm forge. For documentation see
http://wiki.centos.org/AdditionalResources/Repositories/RPMForge

After installing an rpm forge do:

> sudo yum install hdf5 hdf5-devel

To install h5py do:

> sudo easy_install h5py

Last, you need to install mpi4py with:

> su -
> module load openmpi-$(uname -i)
> easy_install mpi4py

Note: The default CentOS sudo policy resets the environments variables and thereby removes the openmpi
settings. So for the last step you cannot use ‘sudo easy_install mpi4py‘ but must install under root
directly.

2.7 Installing on Suse Linux

Installing on OpenSuse 11

In this section we asume a normal desktop install of OpenSuse 11. Not all packages are available in the default
OpenSuse package repository. We recommend to add the Packman Repository to the list of configured sofware
reporistories (To do so, open Yast and go to Software Repositories).

Python

OpenSuse comes with python2.6 pre-installed, you can check if python is installed by doing:

> python --version
Python 2.6

If this failes with an error or a version before 2.6, please install python first(the package is called python). You
also need the python-devel development package. To install it, do:

> sudo zypper install python-devel

GCC

By default, OpenSuse does not install a fortran 90 or a C++ compiler. We suggest using gfortran and g++. These
compilers are installed with the gcc, gcc-c++ and the gcc-fortran packages. To install these, do:

http://wiki.centos.org/AdditionalResources/Repositories/RPMForge


> sudo zypper install gcc gcc-c++ gcc-fortran

MPI2

The Packman Repository provides an OpenMPI package. To install the openmpi packages, do:

> sudo zypper install openmpi openmpi-devel

Unfortunately the openmpi installation does not work out of the box, you need to set the LD_LIBRARY_PATH
variable and edit a configuration file first.

Setting the LD_LIBRARY_PATH The LD_LIBRARY_PATH must be set so that mpi4py can find the openmpi
libraries. To set the variable we must first find out where the openmpi libs can be found, to do so execute:

> mpicxx -showme:link
-pthread -L/usr/lib/mpi/gcc/openmpi/lib -lmpi_cxx -lmpi
-lopen-rte -lopen-pal -ldl -Wl,--export-dynamic -lnsl -lutil -lm -ldl

We need to set LD_LIBRARY_PATH variable to the path after the -L in the output (so in this example case
‘/usr/lib/mpi/gcc/openmpi/lib’, this may be a different path if you system is 64-bits or if the opensuse version is
different).

In bash do:

> export LD_LIBRARY_PATH=/usr/lib/mpi/gcc/openmpi/lib

We recommend you add this line to your ‘.bashrc’ file so that the variable is set correctly for all sessions. If you
have a C shell you need to do a setenv and edit the .cshrc file.

Editing the configuration file It seems that the default openmpi installation has some problems with loading an
LDAP library. To check if your installation has this problem do:

> python -c "from mpi4py import MPI; print MPI.get_vendor()"
...
WARNING: ....
...
DAT: library load failure: libdaplscm.so.2: cannot open shared object file: No such file or directory
...

If you get a long list of warings about DAT providers not found, you need to edit the configuration file and turn
off ldap. To do so, open an editor (as root) on the file /etc/openmpi-mca-params.conf and add this line to the
bottom of the file:

btl = ^udapl

After saving the file, you can rerun the python statement:

> python -c "from mpi4py import MPI; print MPI.get_vendor()"
(’Open MPI’, (1, 2, 8))

HDF5

Amuse can work with HDF5 versions 1.6.* and 1.8.*. The Packman Repository has a package with HDF5 version
1.8.1. To install it, do:

> sudo zypper install hdf5 hdf5-devel



FFTW

Some codes in AMUSE need FFTW 3, FFTW can be installed with:

> sudo zypper install fftw3 fftw3-devel

GSL

On OpenSuse (10.2 and newer), GSL can be installed with:

> sudo zypper install gsl gsl-devel

CMake

CMake is used to build EVTwin. On OpenSuse, CMake can be installed with:

> sudo zypper install cmake

GMP

GMP is required for Adaptb. On OpenSuse, GMP can be installed with:

> sudo zypper install gmp-devel

MPFR

MPFR is required for Adaptb. On OpenSuse, MPFR can be installed with:

> sudo zypper install libmpfr4 mpfr-devel

Python packages in Fedora

Fedora comes with python packages for numpy. You also need the setuptools package to be able to install the
other python packages. To install these, do:

> sudo zypper install python-numpy \
python-setuptools python-setuptools-devel

Python packages with easy_install

The nose, mpi4py, h5py and docutils can be installed with the easy_install command:

> sudo easy_install nose
> sudo easy_install mpi4py
> sudo easy_install h5py
> sudo easy_install docutils

Before installing AMUSE several software packages must be installed. These software packages can be installed
manually or with two prepared installation scripts. The installation scripts will install python and the other pre-
requisites in a user directory. No “root” access is required.

These are the packages AMUSE needs:

• Python (version >= 2.6)



• Numpy (version >= 1.3.0)

• HDF (version 1.6.5 - 1.8.x)

• h5py (version >= 1.2.0)

• MPI (OpenMPI or MPICH2)

• mpi4py (version >= 1.0)

• nose (version >= 0.11)

• docutils (version >= 0.6)

• FFTW (version >= 3.0)

• GSL

• CMake (version >= 2.4)

• GMP (version >= 4.2.1)

• MPFR (version >= 2.3.1)

In the first two sections (compilers and installation_scripts) we explain how to use the two installation scripts to
install AMUSE. In the last section (manual) we have specified the required packages with the needed version for
each.

2.8 Compilers

To build AMUSE from source you need to have a working build environment. The AMUSE build system needs a
C++ and fortan 90 compiler. Please check first if you have a working build environment on your system.

In Ubuntu you can setup the environment with (as root):

apt-get install build-essential curl g++ gfortran gettext zlib1g-dev

In Fedora you can setup the environment with (as root):

yum groupinstall "Development Tools" "Development Libraries"

Installation scripts

We have created two installation scripts to automate the installation of the required packages on a LINUX and
OS.X system. These scripts will install these packages in a user directory. One script downloads and installs
python while the other script downloads and installs the libraries and python packages. As everything is installed
in a user directory these packages can be installed even if a version of the software is already installed on your
system.

The scripts will download and install the software in a user directory. This user directory must be specified with
the PREFIX environment variable. Before running the installation scripts you must set the PREFIX environment
variable and update the path and library path. For shell (bash) you need to do:

export PREFIX=~/amuse/prerequisites
export PATH=${PREFIX}/bin:${PATH}
export LD_LIBRARY_PATH=${PREFIX}/lib:${LD_LIBRARY_PATH}

One script will download, build and install python on your system. The other script is written in Python and will
download and install the other packages. Both scripts can be found in the doc/install directory.

To start the installation do:

# 1. Open a shell and go to the <doc/install> directory
>

# 2. Set the PREFIX, PATH and LD_LIBRARY_PATH environment variables:



> export PREFIX=~/amuse/prerequisites
> export PATH=${PREFIX}/bin:${PATH}
> export LD_LIBRARY_PATH=${PREFIX}/lib:${LD_LIBRARY_PATH}

# 3. Start the installation script for python
> ./install-python.sh

# 4. Start the installation script for the prerequisite packages
> ./install.py download
> ./install.py install

# 5. Update your PATH variable in your profile.
# Make sure the ‘${PREFIX}/bin‘ directory is the first entry in the PATH!

You should now be able to install AMUSE.

Using the installation scripts on OS X

For OS.X you need to install XCode and a gfortran compiler first. The XCode development package is available
on the Apple developers site or for Lion on the Apple Store application.

The standard XCode release does not come with a gfortran compiler. Go to the HPC Mac OS X site for a recent
gfortran compiler, compatible with the XCode tools.

After installing XCode and gfortan, follow the steps described in the previous paragraph.

Manually installing the prerequisites

Python

Python is probably already installed on your system. To check the version of python do:

> python --version
Python 2.6.2

You can download python from http://www.python.org.

Numpy

To check if numpy is installed on your system do:

> python -c ’import numpy; print numpy.version.version’
1.3.0

If this fails with an error or a version before 1.3 you need to install numpy. You can download numpy from
http://www.scipy.org/NumPy.

HDF5 library

HDF5 is a data format specification. The HDF group provides a C library to write and access HDF files.

To check if the HDF library is installed on your system do:

> h5ls -V
h5ls: Version 1.8.3

If this fails with an error or a version before 1.6.5 you need to install the HDF library. You can download HDF
from http://www.hdfgroup.org/.

http://developer.apple.com/devcenter/mac
http://hpc.sourceforge.net/index.php
http://www.python.org
http://www.scipy.org/NumPy
http://www.hdfgroup.org/


h5py

To access HDF5 files from python we use the h5py library.

To check if the h5py library is installed on your system do:

> python -c ’import h5py; print h5py.version.version’
1.2.0

If this fails with an error or a version before 1.2.0 you need to install h5py. You can download h5py from
http://code.google.com/p/h5py/.

docutils

To check if the python docutils are installed on your system do:

> python -c ’import docutils; print docutils.__version__’
0.6

If this fails with an error or a version before 0.6 you need to install docutils. You can download docutils from
http://docutils.sourceforge.net/

MPI

The installed MPI framework must be MPI 2 compatible. AMUSE will work with MPICH2 or OpenMPI

MPICH2 MPICH2 is a portable implementation of the MPI 2 standard.

To check if MPICH2 is installed on your system do:

> mpdhelp

The following mpd commands are available. For usage of any specific one,
invoke it with the single argument --help .

mpd start an mpd daemon
mpdtrace show all mpd’s in ring
mpdboot start a ring of daemons all at once
mpdringtest test how long it takes
...

If this fails with an error you need to install MPICH2 or check for OpenMPI support. You can download MPICH2
from http://www.mcs.anl.gov/research/projects/mpich2/.

OpenMPI OpenMPI is another portable implementation of the MPI 2 standard

To check if OpenMPI is installed on your system do:

> mpicxx -v

If this fails with an error you need to install MPICH2 or OpenMPI support. Most examples in the dopcumentation
assume OpenMPI. You can download OpenMPI from http://www.open-mpi.org/.

MPI4PY

To access MPI from python we use the mpi4py software. To check if the mpi4py library is installed on your
system do:

http://code.google.com/p/h5py/
http://docutils.sourceforge.net/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/


> python -c ’import mpi4py; print mpi4py.__version__’
1.0.0

If this fails with an error or a version before 1.0 you need to install mpi4py. You can download mpi4py from
http://code.google.com/p/mpi4py/.

Nose

Nose is an extension of the python testing framework. It is used for all unit testing in AMUSE.

To check if Nose is installed on your system do:

> nosetests --version
nosetests version 0.11.1
...

If this fails with an error or a version before 0.11 you need to install nose. You can download nose from
http://somethingaboutorange.com/mrl/projects/nose/.

FFTW

FFTW is a C subroutine library for computing discrete Fourier transforms. To check for the availability of fftw on
your system, you can use fftw-wisdom:

> fftw-wisdom --version
fftw-wisdom tool for FFTW version 3.2.1.

You can download the FFTW library from http://www.fftw.org.

GSL

The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. It is free software under the
GNU General Public License. To check for the availability of GSL on your system, you can use gsl-config:

> gsl-config --version
1.14

You can download GSL from http://www.gnu.org/software/gsl/.

CMake

CMake is a cross-platform, open-source build system. CMake is used to control the software compilation pro-
cess using simple platform and compiler independent configuration files. CMake generates native makefiles and
workspaces that can be used in the compiler environment of your choice. CMake is used to build EVTwin. To
check whether you have CMake installed on your system:

> cmake --version
cmake version 2.8.2

You can download CMake from http://www.cmake.org/cmake/resources/software.html.

GMP

GNU MP is a library for arbitrary precision arithmetic (ie, a bignum package). It can operate on signed integer,
rational, and floating point numeric types. GMP is required for Adaptb (Accurate Dynamics with Arbitrary Pre-
cision by Tjarda Boekholt). The best way to check whether you have the right version of GMP installed on your

http://code.google.com/p/mpi4py/
http://somethingaboutorange.com/mrl/projects/nose/
http://www.fftw.org
http://www.gnu.org/software/gsl/
http://www.cmake.org/cmake/resources/software.html


system depends on the package manager you use, but this should always work (note that the library numbers do
not match the release version):

> locate libgmp
/usr/lib64/libgmp.so
/usr/lib64/libgmp.so.10
/usr/lib64/libgmp.so.10.0.3

> locate gmp.h
/usr/include/gmp.h

> grep GNU_MP_VERSION /usr/include/gmp.h
#define __GNU_MP_VERSION 5
#define __GNU_MP_VERSION_MINOR 0
#define __GNU_MP_VERSION_PATCHLEVEL 3

You can download GMP from http://gmplib.org.

MPFR

The MPFR library is a C library for multiple-precision floating-point computations with correct rounding. MPFR
is required for Adaptb (Accurate Dynamics with Arbitrary Precision by Tjarda Boekholt). The best way to check
whether you have the right version of MPFR installed on your system depends on the package manager you use,
but this should always work (note that the library numbers do not match the release version):

> locate libmpfr
/usr/lib64/libmpfr.so
/usr/lib64/libmpfr.so.4
/usr/lib64/libmpfr.so.4.1.0

> locate mpfr.h
/usr/include/mpfr.h

> grep MPFR_VERSION /usr/include/mpfr.h
#define MPFR_VERSION_MAJOR 3
#define MPFR_VERSION_MINOR 1
#define MPFR_VERSION_PATCHLEVEL 0

You can download MPFR from http://www.mpfr.org.

author: Arjen van Elteren (vanelteren@strw.leidenuniv.nl) date: 2010/09/22

3 Installation of the AMUSE software

Before installing AMUSE the prerequisite software must be downloaded and installed, see Installation of the
prerequisite software.

In the current stage of development AMUSE will not be installed in the python site-packages library. Instead,
all code is build in the AMUSE source directories. With this setup we can easily edit the code and run it, without
the need for an extra installation step.

3.1 Configuring the code

The code is configured using the configure command. Before building the code, run ‘configure’ in the AMUSE
root directory.

> ./configure

The ‘configure’ script will check for all prerequisite software and report if any are missing.

http://gmplib.org
http://www.mpfr.org
mailto:vanelteren@strw.leidenuniv.nl


3.2 Building the code

The code is build using a Makefile. To build the code run ‘make’ in the AMUSE root directory.

> make clean
> make
...
legacy codes build
==================

* sse

* hermite0

* bhtree

* phiGRAPE
running generate_main

If everything goes well all legacy codes will be build (sse, hermite0, bhtree and phiGRAPE).

In order to use either MESA, SEBA or ATHENA the codes must be downloaded additionally. This is done
automatically after setting the environment variable DOWNLOAD_CODES to 1. Alternatively, instead of a plain
‘make’ like in the example above you could do:

> make DOWNLOAD_CODES=1

or

> make mesa.code DOWNLOAD_CODES=1
> make seba.code DOWNLOAD_CODES=1
> make athena.code DOWNLOAD_CODES=1

3.3 Testing the build

Warning: For MPICH2 installations, the mpd process daemon must be started befor testing the code. The
mpd application manages the creation of MPI processes. If this is the first time the MPICH2 daemon is run it
will complain about a missing .mpd.conf file. Please follow the instructions printed by the mpd daemon.

> mpd &

If the mpd deamon only complains with ‘no mpd.conf’, these are the steps to take, to create a mpd.conf file:

> echo ’MPD_SECRETWORD=secret’ > ~/.mpd.conf
> chmod 600 ~/.mpd.conf

Please make sure to replace ‘’‘secret’‘’.
After starting mpd we can start the tests.

The tests are run using the nosetests program.

> nosetests
............................................
Ran 91 tests in 12.013s

OK



Warning: If you have an MPICH2 installation but no mpd program your MPICH2 installation has been
configured for the Hydra process manager. To run amuse scripts with the hydra process manager you must
start every command with mpiexec:

> mpiexec nosetests -v

If you do not run under mpiexec you get an error with a usage statement. The error starts like this:

unable to parse user arguments

Usage: ./mpiexec [global opts] [exec1 local opts] : [exec2 local opts] : ...

Warning: On some laptops the hostname will not point to the correct internet address. For these laptops you
can start the mpd daemon on the localhost ip. To do so, you need to set the --ifhn option:

> mpd --ifhn=localhost &

Warning: On OS X, when you install the prerequisites with macports, nosetests will not have a standard
name. It will be named nosetests-<python-version>. So for python2.7 you’ll need to use nosetests-
2.7

> nosetests-2.7
............................................

OK

Real-time testing

The code includes support for real-time testing. The real-time testing application monitors the files in the source
directories (‘src’ and ‘test’). Every time a file is changed it will run most of the tests. After each test a report is
created, this report can be viewed with a web browser.

# go to the AMUSE root directory
# display help information of the realtime_test script
> python -m support.realtime_test --help
Usage: realtime_test.py [options]

Options:
-h, --help show this help message and exit
-p PORT, --port=PORT start serving on PORT

# start the python realtime_test script on port 9080
> python -m support.realtime_test -p 9080
starting server on port: 9080
start test run
...
# open a browser to view the results
> firefox http://localhost:9080/

3.4 Running the code

A python script will not find the AMUSE code as the code is not installed into the python ‘site-packages’ directory
or any other directory that can be found by python automatically.

During a build a shell script is created to run the AMUSE code. To use this script you first have to copy it to a
directory in your PATH. The script is called ‘’amuse.sh’‘. After copying this script you can run amuse code from



anywhere on your disk by starting ‘amuse.sh’. This script has exactly the same command line parameters as the
normal python application.

> amuse.sh
Python 2.6.2 (r262:71600, Sep 1 2009, 16:14:27)
[GCC 4.3.2 20081105 (Red Hat 4.3.2-7)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from amuse.units import units
>>> units.m
unit<m>

4 Getting started with AMUSE

4.1 Introduction

At this point you should have built and tested AMUSE, as described in the previous sections, and are probably
wondering “What can AMUSE do for me?”. This section will get you started with AMUSE.

AMUSE is based on python, so if you’re new to Python, you’ll find the official Python documentation a valuable
resource. Like with Python, there are basically two ways to use AMUSE. Firstly, directly via the interactive
(Python) command line:

> amuse.sh
Python 2.6.4 (r264:75706, Feb 17 2010, 12:05:36)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> quit()

Secondly, by writing (Python) scripts. Suppose you wrote the following script myscript.py, and saved it in the
current working directory:

1 from amuse.units.units import *
2 from amuse.units import constants
3

4 def convert_to_freq(wavelengths = [355.1, 468.6, 616.5, 748.1, 893.1] | nano(m)):
5 """
6 This function converts wavelength to frequency, using the speed of light in vacuum.
7 """
8 print "The speed of light in vacuum:", constants.c
9 print "wavelength --> frequency"

10 for wavelength in wavelengths:
11 print wavelength, " --> ", (constants.c/wavelength).as_quantity_in(giga(Hz))

Then this script can be executed from the AMUSE interactive command line:

>>> import myscript
>>> help(myscript) # Tells you what myscript can do, ...
>>> # ... for example that it has a function to convert wavelength to frequency.
>>> myscript.convert_to_freq()
The speed of light in vacuum: 299792458.0 m * s**-1
wavelength --> frequency
355.1 nm --> 844247.98085 GHz
468.6 nm --> 639761.967563 GHz
616.5 nm --> 486281.359286 GHz
748.1 nm --> 400738.481486 GHz
893.1 nm --> 335676.24902 GHz
>>> from amuse.units.units import *
>>> myscript.convert_to_freq([21.0, 18.0, 6.0] | cm)
The speed of light in vacuum: 299792458.0 m * s**-1
wavelength --> frequency

http://docs.python.org/


21.0 cm --> 1.42758313333 GHz
18.0 cm --> 1.66551365556 GHz
6.0 cm --> 4.99654096667 GHz
>>> quit()

You can also run scripts directly from the terminal prompt. Calling amuse.sh with a file name argument will make
AMUSE execute the file. For this you need to add the following line to your script, telling the script which of its
functions to call when executed:

if __name__ == ’__main__’:
convert_to_freq()

Your script can now be executed directly from the terminal prompt:

> amuse.sh myscript.py
The speed of light in vacuum: 299792458.0 m * s**-1
wavelength --> frequency
355.1 nm --> 844247.98085 GHz
468.6 nm --> 639761.967563 GHz
616.5 nm --> 486281.359286 GHz
748.1 nm --> 400738.481486 GHz
893.1 nm --> 335676.24902 GHz

4.2 Example interactive session

This is an example of an interactive session with AMUSE, showing how the interface to a typical (gravitational
dynamics) legacy code works. Using the Barnes & Hut Tree code, the dynamics of the Sun-Earth system is solved.
This two-body problem is chosen for simplicity, and is, of course, not exactly what a Tree code normally is used
for. First we import the necessary AMUSE modules.

>>> from amuse.community.bhtree.interface import BHTree
>>> from amuse.support.data import core
>>> from amuse.units import nbody_system
>>> from amuse.units import units

Gravitational dynamics legacy codes usually work with N-body units internally. We have to tell the code how to
convert these to the natural units of the specific system, when creating an instance of the legacy code class.

>>> convert_nbody = nbody_system.nbody_to_si(1.0 | units.MSun, 149.5e6 | units.km)
>>> instance = BHTree(convert_nbody)

Now we can tell the instance to change one of its parameters, before it initializes itself:

>>> instance.parameters.epsilon_squared = 0.001 | units.AU**2

Then we create two particles, with properties set to those of the Sun and the Earth, and hand them over to the
BHTree instance.

>>> stars = data.Particles(2)
>>> sun = stars[0]
>>> sun.mass = 1.0 | units.MSun
>>> sun.position = [0.0,0.0,0.0] | units.m
>>> sun.velocity = [0.0,0.0,0.0] | units.m / units.s
>>> sun.radius = 1.0 | units.RSun
>>> earth = stars[1]
>>> earth.mass = 5.9736e24 | units.kg
>>> earth.radius = 6371.0 | units.km
>>> earth.position = [1.0, 0.0, 0.0] | units.AU
>>> earth.velocity = [0.0, 29783, 0.0] | units.ms
>>> instance.particles.add_particles(stars)

We need to setup a channel to copy values from the code to our model in python:

http://en.wikipedia.org/wiki/N-body_units


>>> channel = instance.particles.new_channel_to(stars)

Now the model can be evolved up to a specified end time. The current values of the particles are retieved from the
legacy code by using copy from the channel.

>>> print earth.position[0]
149597870691.0 m
>>> print earth.position.as_quantity_in(units.AU)[0]
1.0 AU
>>> instance.evolve_model(1.0 | units.yr)
>>> print earth.position.as_quantity_in(units.AU)[0] # This is the outdated value! (should update_particles first)
1.0 AU
>>> channel.copy()
>>> print earth.position.as_quantity_in(units.AU)[0]
0.999843742682 AU
>>> instance.evolve_model(1.5 | units.yr)
>>> channel.copy()
>>> print earth.position.as_quantity_in(units.AU)[0]
-1.0024037469 AU

It’s always a good idea to clean up after you’re finished:

>>> instance.stop()

4.3 Example scripts

In the test/examples subdirectory several example scripts are included. They show how the different legacy codes
can be used. One such example is test_HRdiagram_cluster.py. It has several optional arguments. The example
script can be executed from the AMUSE command line as well as from the terminal prompt (in the latter case use
-h to get a list of the available command line options):

>>> import test_HRdiagram_cluster
>>> test_HRdiagram_cluster.simulate_stellar_evolution()
The evolution of 1000 stars will be simulated until t= 1000.0 Myr ...
Using SSE legacy code for stellar evolution.
Deriving a set of 1000 random masses following a Salpeter IMF between 0.1 and 125 MSun (alpha = -2.35).
Initializing the particles
Start evolving...
Evolved model successfully.
Plotting the data...
All done!
>>> from amuse.units.units import *
>>> test_HRdiagram_cluster.simulate_stellar_evolution(end_time=5000 | Myr)
The evolution of 1000 stars will be simulated until t= 5000 Myr ...
...

> amuse.sh test_HRdiagram_cluster.py -h
Usage: test_HRdiagram_cluster.py [options]

This script will generate HR diagram for an
evolved cluster of stars with a Salpeter mass
distribution.

Options:
-h, --help show this help message and exit

...
> amuse.sh test_HRdiagram_cluster.py
The evolution of 1000 stars will be simulated until t= 1000.0 Myr ...
...

If instead of “Plotting the data...” the script printed “Unable to produce plot: couldn’t find matplotlib.”, this
probably means you do not have Matplotlib installed. See the subsection on Matplotlib below.

http://www.amusecode.org/trac/amuse/browser/trunk/examples
http://www.amusecode.org/trac/amuse/browser/trunk/examples/applications/test_HRdiagram_cluster.py


Matplotlib

Matplotlib is a python plotting library which produces publication quality figures. Many of the AMUSE example
scripts use this library to produce graphical output. If you would like to take advantage of this library, get it from
http://matplotlib.sourceforge.net/ and install it in the Python site-packages directory. For your own work, it is of
course also possible to print the required output to the terminal and use your favourite plotting tool to make the
figures, or use gnuplot, as described in the next section.

Gnuplot

Another plotting utility that can be used from Python and AMUSE scripts is gnuplot. Gnuplot can be downloaded
from http://www.gnuplot.info/. If you have gnuplot, you can install the gnuplot-py package to control gnuplot
directly from your script.

To install gnuplot-py, open a shell and do:

easy_install gnuplot-py

4.4 Further documentation

I hope this got you started with AMUSE. To further explore the possibilities with AMUSE, take a look at the other
example scripts, and the available:

• tutorials-label

• reference-label

• design-label

5 Configuring AMUSE

5.1 Introduction

In AMUSE a configuration script is used to for two purposes; to run on different operating systems and to set
compile time options. The AMUSE framework has been built on Linux, AIX and OS X systems, it also runs on
Windows. AMUSE can be configured to run with or without MPI, GPU (CUDA) and openmp. In this document
we will provide a short overview of the configuration options and their effects.

5.2 Basic

The basic configuration of AMUSE uses MPI as the communication channel, does not build any GPU enabled
codes (or GPU enabled versions) and uses openmp if available. The configuration script can be run as:

> ./configure

To get a list of options and important environment variablse run ‘configure‘ with the help flag:

> ./configure --help

A very important variable for the configuration script is the location of the python executable. The python exe-
cutable is searched for in the PATH and you can override it by setting the ‘PYTHON‘ environment variable:

> ./configure PYTHON=/path/to/libraries/python

The configuration script will look for dependent libraries in default locations of the system and, if defined, also
in directories under the ‘PREFIX‘ environment variable. If you installed the prerequisites with the AMUSE
installion scripts (see Installation of the prerequisite software), the configuration script should find all the packages

http://matplotlib.sourceforge.net/
http://www.gnuplot.info/


installed. For most libraries the ‘PREFIX/lib‘ or ‘PREFIX/lib64‘ is searched before the system path. You
can override the ‘PREFIX‘ environment variable:

> ./configure PREFIX=/path/to/libraries/root

5.3 GPU

Currently all codes in AMUSE capable of using the GPU are based on CUDA. To run these codes you will need
CUDA libraries and drivers. Once these have been installed you can run configure like so:

> ./configure --enable-cuda

The configuration script will look for the ‘nvcc‘ compiler and the cuda libraries, in well known paths. Unfortu-
nately it often will not find the cuda tools and you have to specify the some environment variables or configuration
options.

If the configuration script cannot find the nvcc compiler (or if it finds the wrong one) you can specify the nvcc
compiler with the ‘NVCC‘ environment variable:

> ./configure --enable-cuda NVCC=/path/to/nvcc

The configure script also searches for the nvcc compiler in the ‘$CUDA_TK/bin‘ directory:

> ./configure --enable-cuda CUDA_TK=/opt/nvidia

The configure script looks for cuda and cudart libraries in ‘$NVCC/../lib‘ or ‘$NVCC/../lib64‘, if your
libraries cannot be found there you can override the library path with:

> ./configure --enable-cuda --with-cuda-libdirs=/path/to/cuda/lib

Using ‘--with-cuda-libdirs‘will always override the local search paths and should also work if you have
an old version of cuda in ‘/usr/lib‘.

Finally, if all else fails, you can edit the ‘config.mk‘ file after configure has finished. The important variables
in the file are:

• CUDA_ENABLED, valid values are “yes” or “no”.

• NVCC, absolute path to the nvcc executable.

• CUDA_TK, directory of the cuda toolkit installation

• CUDA_LIBS, library flags the add in the linking stage (-L/path -lcuda -lcudart)

Please remember that the ‘config.mk‘ file is overwritten every time configure is run.

Sapporo library version

The Sapporo library will be build when CUDA is enabled. The Sapporo library implements the GRAPE6 API on
GPU hardware. AMUSE is shipped with two versions of the Sapporo library:

• An older version ‘sapporo_light‘ that runs on most CUDA devices but is not maintained any longer

• The latests version ‘sapporo‘ that runs on modern GPU harware. This version should also run on
OpenCL devices but this is still a work in progress.

By default AMUSE will use the older ‘sapporo_light‘ version, to enable the latests version do:

> ./configure --enable-cuda --enable-sapporo2



6 Writing documentation

6.1 Getting started

The documentation for AMUSE is generated from ReStructured Text using the Sphinx documentation generation
tool. Sphinx version 1.0 or later is required. You might still run into problems, so most developers work from the
sphinx source repository (Mercurial based) because it is a rapidly evolving project:

> hg clone http://bitbucket.org/birkenfeld/sphinx/
> cd sphinx
> python setup.py install

The documentation sources are found in the doc/ directory in the trunk. To build the AMUSE documentation in
html format, cd into doc/ and do:

make html

you can also pass a pdflatex flag to make to build a pdf, or pass no arguments to show help information.

The output produced by Sphinx can be configured by editing the conf.py file located in the doc/.

6.2 Organization of the AMUSE documentation

The actual ReStructured Text files are kept in doc/install, doc/design, doc/tutorial. The main entry
point is doc/index.txt. The documentation suite is built as a single document in order to make the most
effective use of cross referencing, we want to make navigating the AMUSE documentation as easy as possible.

Additional files can be added to the various sections by including their base file name (the .txt extension is not
necessary) in the table of contents.

http://sphinx.pocoo.org/

	Obtaining AMUSE
	Download
	Getting started
	Releases
	Need an account?
	Tarball

	Bleeding edge

	Installation of the prerequisite software
	Installing on Ubuntu
	Installing on Ubuntu version > 10.10
	All
	Python
	GCC
	MPI2
	HDF5
	FFTW
	GSL
	CMake
	GMP
	MPFR
	Python packages in Ubuntu
	Python packages with easy_install
	FFTW

	Installing on OS X
	Installing on MAC OS X with MacPorts

	Installing on Arch Linux
	All

	Installing on Fedora 18
	All in One

	Installing on Fedora 11
	Python
	GCC
	MPI2
	HDF5
	FFTW
	GSL
	CMake
	GMP
	MPFR
	Python packages in Fedora
	Python packages with easy_install

	Installing on RedHat (CentOS)
	Installing on CentOS 6

	Installing on Suse Linux
	Installing on OpenSuse 11

	Compilers
	Installation scripts
	Manually installing the prerequisites


	Installation of the AMUSE software
	Configuring the code
	Building the code
	Testing the build
	Real-time testing

	Running the code

	Getting started with AMUSE
	Introduction
	Example interactive session
	Example scripts
	Matplotlib
	Gnuplot

	Further documentation

	Configuring AMUSE
	Introduction
	Basic
	GPU
	Sapporo library version


	Writing documentation
	Getting started
	Organization of the AMUSE documentation


