New effective recombination coefficients for nebular N II lines *

X. Fang¹, P. J. Storey² and X.-W. Liu^{1,3}

¹ Department of Astronomy, School of Physics, Peking University, Beijing 100871, P. R. China e-mail: fangx@vega.bac.pku.edu.cn

² Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

³ The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, P. R. China

Received / Accepted

ABSTRACT

Aims. In nebular astrophysics, there has been a long-standing dichotomy in plasma diagnostics between abundance determinations using the traditional method based on collisionally excited lines (CELs), on the one, hand and (optical) recombination lines/continuum, on the other. A number of mechanisms have been proposed to explain the dichotomy. Deep spectroscopy and recombination line analysis of emission line nebulae (planetary nebulae and H II regions) in the past decade have pointed to the existence of another previously unknown component of cold, H -deficient material as the culprit. Better constraints are needed on the physical conditions (electron temperature and density), chemical composition, mass, and spatial distribution of the postulated H -deficient inclusions in order to unravel their astrophysical origins. This requires knowledge of the relevant atomic parameters, most importantly the effective recombination coefficients of abundant heavy element ions such as C II, O II, N II, and Ne II, appropriate for the physical conditions prevailing in those cold inclusions (e.g. $T_e \leq 1,000$ K).

Methods. Here we report new *ab initio* calculations of the effective recombination coefficients for the N II recombination spectrum. We have taken into account the density dependence of the coefficients arising from the relative populations of the fine-structure levels of the ground term of the recombining ion $(^{2}P^{o}_{1/2} \text{ and } ^{2}P^{o}_{3/2})$ in the case of N III), an elaboration that has not been attempted before for this ion, and it opens up the possibility of electron density determination via recombination line analysis. Photoionization cross-sections, bound state energies, and the oscillator strengths of N II with $n \le 11$ and $l \le 4$ have been obtained using the close-coupling R-matrix method in the intermediate coupling scheme. Photoionization data were computed that accurately map out the near-threshold resonances and were used to derive recombination via high-*n* resonances lying between the $^{2}P^{o}_{1/2}$ and $^{2}P^{o}_{3/2}$ levels. The new calculations are valid for temperatures down to an unprecedentedly low level (approximately 100 K). The newly calculated effective recombination coefficients allow us to construct plasma diagnostics based on the measured strengths of the N II optical recombination lines (ORLs).

Results. The derived effective recombination coefficients are fitted with analytic formulae as a function of electron temperature for different electron densities. The dependence of the emissivities of the strongest transitions of $N \pi$ on electron density and temperature is illustrated. Potential applications of the current data to electron density and temperature diagnostics for photoionized gaseous nebulae are discussed. We also present a method of determining electron temperature and density simultaneously.

Key words. atomic data – line: formation – H II regions – ISM: atoms – planetary nebulae: general

1. Introduction

The principal means of electron temperature and density diagnostics and heavy-element abundance determinations in nebular plasmas has, until recently, been measurement of collisionally excited lines (CELs). The emissivities of CELs have, however, an exponential dependence on electron temperature and, consequently, so do the heavy element abundances deduced from them. An alternative method of determining heavy element abundances is to divide the intensities of ORLs emitted by heavy element ions with those by hydrogen. Such ratios are only weakly dependent on temperature. In planetary nebulae (PNe), abundances of C, N, and O derived from ORLs have been shown to be systematically larger than those derived from CELs typically by a factor of 2. Discrepancies of much larger magnitudes, say by more than a factor of 5, are also found for a small fraction of PNe (about 10%; Liu et al. 1995, 2000, 2001, 2006b; Liu et al. 2004; Luo et al. 2001). In the most extreme case, the abundance discrepancy factor (ADF) reaches a record value of 70 (Liu et al. 2006). There is strong evidence that nebulae contain another component of metal-rich, cold plasma, probably in the form of H -deficient inclusions embedded in the diffuse gas (Liu et al. 2000). The existence of cold inclusions provides a natural explanation to the long-standing dichotomy of abundance determinations and plasma diagnostics (Liu 2003, 2006a, 2006b). The prerequisite for reliable determinations of recombination line abundances is accurate effective recombination coefficients for heavy element recombination lines. In this paper, we present new effective recombination coefficients for the recombination spectrum of N II.

Radiative recombination coefficients of N II have been given by Péquignot et al. (1991). Nussbaumer & Storey (1984) tabulate dielectronic recombination coefficients of N II obtained from a model in which resonance states are represented by boundstate wave functions. Escalante & Victor (1990) calculate effective recombination coefficients for C I and N II lines using an

Send offprint requests to: X. Fang

^{*} Complete Tables 3 – 6 in electronic form only are available at the CDS via anonymous ftp to cdarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

atomic model potential approximation for transition probabilities and recombination cross-sections. They then add the contribution from dielectronic recombination using the results of Nussbaumer & Storey (1984).

In the most recent work of N II by Kisielius & Storey (2002), they follow the approach of Storey (1994) who, in dealing with OII, uses a unified method for the treatment of radiative and dielectronic recombination by directly calculating recombination coefficients from photoionization cross-sections of each initial state. They also incorporate improvements introduced by Kisielius et al. (1998) in their work on Ne II. The N⁺ photoionization cross-sections were calculated in LS-coupling using the ab initio methods developed for the Opacity Project (Seaton 1987; Berrington et al. 1987) and the Iron Project (Hummer et al. 1993), hereafter referred to as the OP methods. The calculations employed the R-matrix formulation of the close-coupling method, and the resultant cross-sections are of higher quality. In the photoionization calculations of Kisielius & Storey (2002), for the energy ranges in which the resonances make main contributions to the total recombination, an adaptive energy mesh was used to map out all the strong resonances near thresholds. This approach has also been adopted in our current calculations, and it will be described in more details in a later section. In the work of Kisielius & Storey (2002), transition probabilities for all lowlying bound states were also calculated using the close-coupling method, so that the bound-bound and bound-free radiative data used for calculating the recombination coefficients formed a selfconsistent set of data and were expected to be significantly more accurate than those employed in earlier work.

Here we report new calculations of the effective recombination coefficients for the NII recombination spectrum. Hitherto few high quality atomic data were available to diagnose plasmas of very low temperatures (≤ 1000 K), such as the cold, H-deficient inclusions postulated to exist in PNe (Liu et al. 2000). We have calculated the effective recombination coefficients for the N⁺ ion down to an unprecedentedly low temperature (about 100 K). At such low temperatures, dielectronic recombination via high-n resonances between the N²⁺ ground $^{2}P^{o}_{1/2}$ and $^{2}P^{o}_{3/2}$ fine-structure levels contributes significantly to the total recombination coefficient. We include such effects in our calculations. We also take into account the density dependence of the coefficients through the level populations of the fine-structure levels of the ground state of the recombining ion $(^{2}P^{o}_{1/2,3/2}$ in the case of N^{2+}). That opens up the possibility of electron density determinations via recombination line analysis. With the exception of the calculations of Kisielius & Storey (1999) on O III recombination lines, all previous work on nebular recombination lines has been in LS-coupling and therefore it tacitly assumed that the levels of the ground state are populated in proportion to their statistical weights. Photoionization cross-sections, bound state energies and oscillator strengths of N II with $n \le 11$ and $l \le 4$ have been obtained using the R-matrix method in the intermediate coupling scheme. The photoionization data are used to derive recombination coefficients, including contributions from radiative and dielectronic recombination. The results are applicable to PNe, H II regions and nova shells for a wide range of electron temperature and density.

2. Atomic data for N⁺

2.1. The N⁺ term scheme

The principal series of N π is $2s^2 2p(^2P^o)nl$, which gives rise to singlet and triplet terms. Also interspersed are members of the

series $2s2p^{2}({}^{4}P)nl$ (n = 3, 4) giving rise to triplet and quintet terms. Higher members of this series lie above the first ionization limit, and hence may give rise to low-temperature dielectronic recombination. There are a few members of the $2s2p^{2}({}^{2}D)nl$ and $2s2p^{2}({}^{2}S)nl$ series located above the first ionization threshold which also give rise to resonance structures in the photoionization cross-sections for singlets and triplets. For photon energies above the second ionization threshold, the main resonance structures are due to the $2s2p^{2}({}^{2}D)nl$ series with some interlopers from the $2s2p^{2}({}^{2}S)nl$ and $2s2p^{2}({}^{2}D)nl$ series (Kisielius & Storey 2002).

2.2. New R-matrix calculation

We have carried out a new calculation of bound state energies, oscillator strengths and photoionization cross-sections for NII states with $n \leq 11$ using the OP methods (Hummer et al. 1993). The N²⁺ target configuration set was generated with the general purpose atomic structure code SUPERSTRUCTURE (Eissner et al. 1974) with modifications of Nussbaumer & Storey (1978). The target radial wave functions of N²⁺ were then generated with another atomic structure code AUTOSTRUCTURE¹, which, developed from SUPERSTRUCTURE and capable of treating collisions, is able to calculate autoionization rates, photoionization cross-sections, etc. The original theory of AUTOSTRUCTURE is described by Badnell (1986). The wave functions of the nineteen target terms were expanded in terms of the 21 electron configurations 1s²2s²2p, 1s²2s2p², 1s²2p³, $1s^2 2s^2 \overline{3}s, 1s^2 2s^2 \overline{3}p, 1s^2 2s^2 \overline{3}d, 1s^2 2s 2p \overline{3}s, 1s^2 2s 2p \overline{3}p, 1s^2 2s 2p \overline{3}d,$ $1s^2 2p^2 \overline{3}s$, $1s^2 2p^2 \overline{3}p$, $1s^2 2p^2 \overline{3}d$, $1s^2 2s^2 \overline{3}d^2$, $1s^2 2p \overline{3}d^2$, $1s^2 2p^2 \overline{3}d^2$, $1s^2 2s^2 \overline{4}s$, $1s^22s^2\bar{4}d$, $1s^22s2p\bar{4}s$, $1s^22s2p\bar{4}p$, $1s^22s2p\bar{4}d$, $1s^22s2p\bar{4}f$, $1s^22p^24p$, where 1s, 2s and 2p are spectroscopic orbitals and 3l and $\overline{4}l'$ (l = 0, 1, 2 and l' = 0, 1, 2, 3) are correlation orbitals. The one-electron radial functions for the 1s, 2s and 2p orbitals were calculated in adjustable Thomas-Fermi potentials, while the radial functions for the remaining orbitals were calculated in Coulomb potentials of variable nuclear charge, $Z_{nl} = 7|\lambda_{nl}|$. The potential scaling parameters λ_{nl} were determined by minimizing the sum of the energies of the eight energetically lowest target states in our model. We obtained for the potential scaling parameters: $\lambda_{1s} = 1.4279$, $\lambda_{2s} = 1.2840$, $\lambda_{2p} = 1.1818$, $\lambda_{\bar{3}s} = -0.9696, \lambda_{\bar{3}p} = -0.9054, \lambda_{\bar{3}d} = -1.0924, \lambda_{\bar{4}s} = -1.3871, \lambda_{\bar{4}p} = -1.3821, \lambda_{\bar{4}d} = -1.5797$ and $\lambda_{\bar{4}f} = -1.9837$.

In Table 1, we compare experimental target state energies (Eriksson 1983) as well as values calculated by Kisielius & Storey (2002) with our results for the eight lowest target terms that belong to the three lowest configurations, $2s^22p$, $2s2p^2$ and $2p^3$. We use the experimental target energies in the calculation of the Hamiltonian matrix of the (N + 1) electron system and in the calculation of energy levels, oscillator strengths and photoionization cross-sections of N II. We use nineteen target terms in our R-matrix calculation where we add selected terms from the seven configurations $1s^22s^2 \bar{3}s$, $1s^22s^2 \bar{3}g$, $1s^22s^2 \bar{3}d$, $1s^22s2p \bar{3}s$, $1s^22s2p \bar{3}d$, $1s^22s2p \bar{3}d$ and $1s^22p^2 \bar{3}p$ in order to increase the dipole polarizability of the terms of the $2s^22p$ and $2s2p^2$ configurations to the dipole polarizability of the $1s^22s^22p^2P^0$ and $1s^22s2p^2^2P^0$. The chosen target terms are listed in Table 2, which shows that our calculated target

¹ AUTOSTRUCTURE is developed by the Department of Physics at the University of Strathclyde, Glasgow, Scotland. The code is available from the website http://amdpp.phys.strath.ac.uk/autos.

Table 1. Comparison of energies (in Ry) for the N²⁺ target states

Configuration	Term	present	KS2002 ^a	Experimental ^b
1s ² 2s ² 2p	$^{2}P^{o}$	0.000000	0.00000	0.00000
$1s^22s2p^2$	${}^{4}\mathbf{P}$	0.509051	0.51771	0.52091
	2 D	0.933243	0.92246	0.91960
	^{2}S	1.235909	1.20597	1.19279
	$^{2}\mathbf{P}$	1.362871	1.33866	1.32898
$1s^{2}2p^{3}$	$^{4}S^{o}$	1.706032	1.70403	1.70123
	2 D ^o	1.872797	1.85796	1.84962
	$^{2}P^{o}$	2.144377	2.11771	2.09865

^{*a*} Theoretical calculations by Kisielius & Storey (2002).

^b Eriksson (1983).

Table 2. The N²⁺ target terms

Configuration	Term
$1s^22s^22p$	$^{2}P^{o}$
$1s^22s2p^2$	^{4}P
	^{2}D
	^{2}S
	^{2}P
$1s^22p^3$	${}^{4}S^{o}$
1	$^{2}D^{o}$
	$^{2}P^{o}$
$1s^22s^2\overline{3}s$	^{2}S
$1s^22s2p(^3P^o)\bar{3}s$	${}^{4}\mathbf{P}^{o}$
$1s^22s^2\bar{3}p$	$^{2}P^{o}$
$1s^22s^2\overline{3}d$	^{2}D
$1s^22s2p\bar{3}p$	^{2}P
$1s^22s2p\bar{3}s$	$^{2}P^{o}$
$1s^22s2p\bar{3}p$	${}^{4}P$
	^{2}D
$1s^22s2p\bar{3}s$	$^{2}\mathbf{P}^{\mathrm{o}}$
$1s^22p^2\bar{3}p$	${}^{4}\mathrm{D}^{\mathrm{o}}$
$1s^2 2s^2 p\bar{3}d$	${}^{4}P^{o}$

energies are in slightly worse agreement with experiment than those of Kisielius & Storey (2002) although it should be noted that their energies were calculated in *LS*-coupling, whereas ours are weighted averages of fine-structure level energies. The configuration interaction in our target is less extensive than in theirs due to the additional computational constraints imposed by an intermediate coupling calculation as opposed to an *LS*-coupling one. We do, however, consider that our set of target states represents the polarizability of the important N²⁺ states better than does the target of Kisielius & Storey (2002).

2.3. Energy levels of N⁺

Experimental energy levels for N⁺ have been given by Eriksson (1983) for members of the series $2s^22p(^2P^o)nl$ with $n \le 16$ and $l \le 4$, for the series $2s2p^2(^4P^e)nl$ with $n \le 12$ and $l \le 4$ and for the series $2s2p^2(^2D^e)3l$, 4p although some levels are missing. Energy levels for the states $^{3}P^e_{2,1,0}$ belonging to the equivalent electron configuration $2s^22p^4$ are also presented. We use these

experimental data as a benchmark for our N II energy level calculation.

The current calculations of energy levels include only the states belonging to the configurations $2s^2 2p(^2P_{l_c}) nl$, $2s2p^2({}^4P_{J_c}^e)nl$ and possibly $2s2p^2({}^2D_{J_c}^e)nl$ with ionization energies less than E_0 and total orbital angular momentum quantum number $L \leq 8$, where $J_{\rm C}$ is the total angular momentum quantum number of the core electrons. Every single energy level calculated by ab initio methods is further identified with the help of the experimental energy level tables of Eriksson (1983), and is used in preference to quantum defect extrapolation from experimentally known lower states. The bound state energies for the lowest levels are calculated using R-matrix codes, with an effective principal quantum number range set to be $0.5 \le v \le 10.5$, and the codes are run with a searching step of $\delta v = 0.01$. We assume that the subsequent iteration converges on a final energy when $\Delta E < 1 \times 10^{-5}$ Ryd. We only keep the final energy levels with $n \leq 11$ and $l \leq 4$, and delete the ng levels with n > 6, because of numerical instabilities in the codes. In total, 377 levels are obtained. The photoionization cross-sections from these bound states are calculated later using outer region R-matrix codes.

For states with $11 < n \le n_d$, and $l \le 3$, where calculated energies exist for lower members of the series, a quantum defect has been calculated for the highest known member (usually with n = 11), and this quantum defect is used to determine the energies of all higher terms.

Finally, if neither of the above methods can be used, the state is assumed to have a zero quantum defect.

2.4. Bound-bound radiative data

Radiative transition probabilities are taken from three sources,

(1) Ab initio calculations: We have computed values of weighted oscillator strengths, gf, for all transitions between bound states with ionization energies less than or equal to E_0 (corresponding to n = 11 in the principal series of N⁺), with total orbital angular momentum quantum number $L \leq 8$, and with total angular momentum quantum number $J \leq 6$. The data are calculated in the intermediate coupling scheme, so there are transitions between states of different total spins. Two-electron transitions, which involve a change of core state, are also included.

(2) Coulomb approximation: For pairs of levels where oscillator strengths are not computed by the *ab initio* method, but where one or both of the states have a non-zero quantum defect, the dipole radial integrals required for the calculation of transition probabilities are calculated using the Coulomb approximation. Details are given by Storey (1994).

(3) Hydrogenic approximation: For pairs of levels with a zero quantum defect hydrogenic dipole radial integrals are calculated, using direct recursion on the matrix elements themselves as described by Storey & Hummmer (1991).

2.5. Photoionization cross-sections and recombination coefficients

The recombination coefficient for each level $nls L[K]^{\pi}$ _{*J*} is calculated directly from the photoionization cross-sections for that state. There are three approximations in which the photoionization data are obtained.

(1) Photoionization cross-sections are computed for all the 377 states with ionization energy less than or equal to $E_0, L \le 8$

and $J \leq 6$. We obtain the recombination coefficient directly by integrating the appropriate R-matrix photoionization cross-sections.

(2) Coulomb approximation: As in the bound-bound case, the Coulomb approximation is used for states where no OP data are available, but which have a non-zero quantum defect. The calculation of photoionization data using Coulomb functions has been described by Burgess & Seaton (1960) and Peach (1967).

(3) For all states for which the R-matrix photoionization cross-sections have not been calculated explicitly, the hydrogenic approximation to the photoionization cross-sections is evaluated, using the routines of Storey & Hummer (1991) to generate radiative data in hydrogenic systems.

2.6. Energy mesh for N n photoionization cross-sections

The photoionization cross-sections for N II generated by the Opacity Project (OP) method were based on a quantum defect mesh with 100 points per unit increase in the effective quantum number derived from the next threshold. In contrast to the OP calculations, we use a variable step mesh for photoionization cross-section calculations for a particular energy region above the $^{2}P^{o}_{3/2}$ threshold, which is appropriate to dielectronic recombination in nebular physical conditions. This energy mesh delineates all resonances to a prescribed accuracy (Kisielius et al. 1998; Kisielius & Storey 2002). This detailed consideration of the energy mesh was undertaken for the region from the $2s^{2}2p(^{2}P^{o}_{3/2})$ limit up to 0.160 Ryd (n = 5) below the $2s2p^{2}(^{4}P_{1/2})$ limit, since this region contains the main contribution to the total recombination at the temperatures of interest for the triplet and singlet series.

From 0.160 Ryd below the $2s2p^2$ (⁴P_{1/2}) limit to 0.0331 Ryd below the $2s2p^2$ (⁴P_{1/2}) limit, we use a quantum defect mesh with an increment of 0.01 in effective principal quantum number. The energy 0.160 Ryd corresponds to a principal quantum number of five relative to the next threshold, and 0.0331 Ryd corresponds to eleven. In total about 600 points are used in this region. For the region from 0.0331 Ryd (n = 11) below the $2s2p^2$ (⁴P_{1/2}) limit up to the $2s2p^2$ (⁴P_{5/2}) limit, we use the Gailitis average (Gailitis 1963). We use the method for this part of photoionization calculations because of the very dense resonances in this narrow energy region. About 100 points are used.

In the region from the $2s2p^2 ({}^{4}P_{5/2})$ limit up to 0.0331 Ryd (n = 11) below the $2s2p^2 ({}^{2}D_{3/2})$ limit, a quantum defect mesh is again used, with an increment of 0.01 in effective principal quantum number. Here 0.0331 Ryd corresponds to a principal quantum number of eleven relative to the next threshold, $2s2p^2 ({}^{2}D_{3/2})$. There are about 800 points used in this region. For the energetically lowest region between the two ground fine-structure levels of N III, $2s^22p ({}^{2}P^o_{1/2})$ and $2s^22p ({}^{2}P^o_{3/2})$, we use linear extrapolation from a few points lying right above the $2s^22p ({}^{2}P^o_{3/2})$ threshold. About 100 points are used in this region.

During the calculation of photoionization cross-sections, we check for every bound states to make sure that the cross-section data of different energy areas all join smoothly. Figure 1 shows the photoionization cross-sections calculated from the five lowest levels ${}^{3}P^{e}_{0}$, ${}^{3}P^{e}_{1}$, ${}^{3}P^{e}_{2}$, ${}^{1}D^{e}_{2}$ and ${}^{1}S^{e}_{0}$ belonging to the ground configuration $1s^{2}2s^{2}2p^{2}$ of N⁺. Photoionization cross-sections calculated for the five different energy regions have been joined together.

Fig. 1. (a) Photoionization cross-sections from the lowest level of N II: $2s^22p^2 {}^{3}P^{e}{}_{J=0}$. The data calculated by different methods for the five energy regions have been joined together. The insert zooms in a particular energy area, and the mesh points used for the photoionization calculations are shown in the inset.

Fig. 1. – *Continued.* (b) Photoionization cross-sections from the level of N II: $2s^22p^2 {}^3P^e {}_{J=1}$. See also caption to Fig. 1 (a).

Fig. 1. – *Continued.* (c) Photoionization cross-sections from the level of N II: $2s^22p^2 {}^3P^e {}_{J=2}$. See also caption to Fig. 1 (a).

3. Calculation of N⁺ population

3.1. The N⁺ populations

The calculation of populations is a three stage process to compute departure coefficients, $b(J_C; nl K J)$, defined in terms of populations by

$$\left(\frac{N(J_{\rm C};nl\,K\,J)}{N_{\rm e}N_{\rm +}(J_{\rm C})}\right) = \left(\frac{N(J_{\rm C};nl\,K\,J)}{N_{\rm e}N_{\rm +}(J_{\rm C})}\right)_S b(J_{\rm C};nl\,K\,J),\tag{1}$$

Fig. 1. – *Continued.* (d) Photoionization cross-sections from the level of N II: $2s^22p^2$ ¹D^e $_{J=2}$. See also caption to Fig. 1 (a).

Fig. 1. – *Continued.* (e) Photoionization cross-sections from the level of N II: $2s^22p^{2-1}S^e_{J=0}$. See also caption to Fig. 1 (a).

where J_C is an N²⁺ core state and the subscript *S* refers to the value of the ratio given by the Saha and Boltzmann equations, and N_e and $N_+(J_C)$ are the number densities of electrons and recombining ions, respectively. We distinguish two boundaries in principal quantum number, n_d and n_l . For $n \le n_d$ collisional processes are negligible compared to radiative decays and can be omitted from the calculation of the populations. For higher n a full collisional-radiative treatment of the populations is necessary as described by Hummer & Storey (1987) and Storey & Hummer (1995) with some additions to treat dielectronic recombination. The boundary at $n = n_l$ is defined such that for $n > n_l$ the redistribution of population due to *l*-changing collisions is rapid enough to assume that the populations obey the Boltzmann distribution for a given n and hence that $b_{nl} = b_n$ for all *l*.

The three stages of the calculation are as follows:

Stage 1: A calculation of $b(J_{\rm C}; n)$ is made for all n < 1000, using the techniques and atomic rate coefficients described by Hummer & Storey (1987) and Storey & Hummer (1995) with the addition of *l*-averaged autoionization and dielectronic capture rates computed with AUTOSTRUCTURE for states of $({}^{2}{\rm P^{o}}_{3/2})$ parentage that lie above the ionization limit. For n > 1000, we assume $b_n = 1$. The results of this calculation provide the values of *b* for $n > n_l$ and the initial values for $n \le n_l$ for Stage 2. Stage 2: A calculation of $b(J_C; nl K J)$ is made for all $n \le n_l$ using the same collisional-radiative treatment as in Stage 1 but now resolved by total *J*. The combined results of Stages 1 and 2 provide the values of *b* for $n > n_d$.

Stage 3: For the energies less than that which corresponds to $n = n_d$ in the principal series, departure coefficients $b(J_C; nl K J)$ are computed for states of all series. Since only spontaneous radiative decays link these states, the populations are obtained by a step-wise solution from the energetically highest to the lowest state.

3.2. Dielectronic recombination within the ²P^o parents

Within the ²P^o parents, the contribution by dielectronic recombination to the total recombination is shown to become significant at very low temperatures (≤ 250 K), due to recombination into high-lying bound states of the ²P^o_{3/2} parent from the ²P^o_{1/2} continuum states. We incorporate this low-temperature process into our calculation of the N⁺ populations. Figure 2 is a schematic diagram illustrating N II dielectronic capture, autoionization and radiative decays. The electrons captured to the high-n autoionizing levels decay to low-n bound states through cascades, and optical recombination lines are emitted. Radiative transitions which change parent, such as (²P^o_{3/2}) $n_1l_1 - (^2P^o_{1/2})n_0l_0$, are included for those states for which R-matrix calculated values are present. Higher states are treated by hydrogenic or Coulomb approximations which do not allow parent changing transitions.

In Figure 2, three multiplets of N II are presented as examples: V3 $2s^22p3p^{3}D^{e} - 2s^22p3s^{3}P^{o}$, the strongest 3p - 3s transition, V19 $2s^22p3d^{3}F^{o} - 2s^22p3p^{3}D^{e}$, the strongest 3d - 3p transition, and V39 $2s^22p4f$ G[7/2,9/2]^e $- 2s^22p3d^{3}F^{o}$, the strongest 4f - 3d transition. The results for these three multiplets are analysed in Section 4.3.

3.3. The ²P^o parent populations

The contribution to the total recombination coefficient of a state depends on the relative populations of the ${}^2P^{o}_{1/2}$ and ${}^2P^{o}_{3/2}$ parent levels, which generally dominate the populations of the recombining ion N²⁺ under typical nebular physical conditions. The relative populations of the two fine-structure levels deviate from the statistical weight ratio, 1 : 2, which is assumed in all work hitherto on this ion. The deviation affects the populations of the high Rydberg states, and consequently total dielectronic recombination coefficients at low-density and low-temperature conditions.

We model the N²⁺ populations with a five level atom comprising the two levels of the ²P^o term and the three levels of the ⁴P term, although it should be noted that the populations of the three ⁴P levels are almost negligible in the nebular conditions considered here (Section 4.5). The relative populations are assumed to be determined only by collisional excitation, collisional de-excitation and spontaneous radiative decay. Transition probabilities were taken from Fang et al. (1993) and thermally averaged collision strengths from Nussbaumer & Storey (1979) and Butler & Storey (private communication).

Figure 3 shows the fractional populations of the N $^{2+2}$ P^o $_{1/2}$ and 2 P^{o} $_{3/2}$ fine-structure levels at several electron temperatures and as a function of electron density, ranging from 10² to 10⁶ cm⁻³, applicable to PNe and H II regions. The fractional populations vary significantly below 10⁴ cm⁻³ and converge to the thermalized values at higher densities.}

Fig. 2. Schematic figure showing the low-temperature (≤ 250 K) dielectronic recombination of N II through the fine-structure autoionizing levels between the two lowest ionization thresholds of N III $^{2}P^{o}_{1/2}$ and $^{2}P^{o}_{3/2}$. The electrons captured to the high-*n* autoionizing levels decay to low-*n* bound states through cascades and optical recombination lines (ORLs) are thus emitted. Here Multiplets V3, V19 and V39 are presented as examples.

3.4. The Cases A and B

Baker & Menzel (1938) define the Cases A and B with reference to the recombination spectrum of hydrogen. In N II, there are five low-lying levels belonging to the ground configuration $2s^22p^2$, ${}^{3}P^{e}_{0,1,2}$, ${}^{1}D^{e}_{2}$ and ${}^{1}S^{e}_{0}$. Just as in Kisielius & Storey (2002), we define two cases for N II. In Case A, all emission lines are assumed to be optically thin. In Case B, lines terminating on the three lowest levels ${}^{3}P^{e}_{0,1,2}$ are assumed to be optically thick and no radiative decays to these levels are permitted when calculating the population structure. The latter case is generally a better approximation for most nebulae.

4. Results and discussion

4.1. Effective recombination coefficients

The population structure of N⁺ has been calculated for electron temperature log $T_e[K] = 2.1 \sim 4.3$, with a step of 0.1 in logarithm, and for the electron density $N_e = 10^2 \sim 10^6$ cm⁻³, also with a step of 0.1 in logarithm. Constrained by the range of the exponential factors involved in the calculation of the departure coefficients using the Saha-Boltzmann equation, calculation of the effective recombination coefficients starts from 125 K (log $T_e = 2.1$). For electron densities greater than 10^6 cm⁻³, as pointed out by Kisielius & Storey (2002), it is necessary to include *l*-changing collisions for n < 11. This is however beyond the scope of the current treatment.

In Tables 3, 4, 5 and 6 we present the effective recombination coefficient, $\alpha_{\rm eff}(\lambda)$, in units of cm³ s⁻¹, for strongest N II transitions with valence electron orbital angular momentum quantum number $l \leq 5$, at electron densities $N_{\rm e}=10^2$, 10^3 , 10^4 and 10^5

cm⁻³, respectively, in Case B. The effective recombination coefficient is defined such that the emissivity $\epsilon(\lambda)$, in a transition of wavelength λ is given by

$$\epsilon(\lambda) = N_{\rm e} N_{\rm +} \alpha_{\rm eff}(\lambda) \frac{hc}{\lambda} \quad [{\rm ergs} \, {\rm cm}^{-3} {\rm s}^{-1}]. \tag{2}$$

Transitions included in the tables are selected according to the following criteria:

(1) $\lambda \ge 912 \text{ Å};$

(2) $\alpha_{\text{eff}}(\lambda) \ge 1.0 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1}$ at $T_{\text{e}} = 1000 \text{ K}$ for all N_{e} 's, and $\ge 1.0 \times 10^{-15} \text{ cm}^3 \text{ s}^{-1}$ at all T_{e} 's and N_{e} 's;

(3) All fine-structure components are presented for multiplets from the 3d - 3p and 3p - 3s configurations. For the 4f - 3d configurations, a few selected multiplets are listed, but only V38 and V39 includes all the individual components. These transitions fall in the visible part of the spectrum and among them are the strongest recombination lines of N π .

In Tables 3, 4, 5 and 6, the wavelengths of all the 4 - 3 and 3 - 3 transitions and majority of the 5 - 4 and 5 - 3 transitions are experimentally known. All the wavelengths of the 6 - 5 and 6 - 4 transitions are predicted. Our calculated wavelengths, derived from the experimental energies, agree with the experimentally known wavelengths within 0.001%. Our predicted wavelengths for experimentally unknown transitions agree with those predicted by Hirata & Horaguchi (1995) within 0.007% except for one 6d - 3p transition wavelength which differs by 0.24 Å. However, this transition is spectroscopically less important compared to the 4 - 3 and 3 - 3 ones.

In these tables, we use the pair-coupling notation $L[K]_J^{\pi}$ for the states belonging to the (²P^o) *n*f and *n*g configurations, as in Eriksson (1983). As shown by Cowan (1981), pair-coupling is

Fig. 3. Fractional populations of the N^{2+ 2}P^o_{1/2} and ²P^o_{3/2} parent levels. The red solid and blue dashed curves represent the populations of the ²P^o_{1/2} and ²P^o_{3/2} levels, respectively. Four temperature cases, 200 K, 1,000 K, 5,000 K and 10,000 K are shown.

probably appropriate for the states of intermediate-l (l = 3, 4). The same notation is adopted for the (²P^o) *n*h configurations. For states belonging to low-l ($l \le 2$) configurations, *LS*-coupling notation ^{2S+1} L_{t}^{π} is used.

4.2. Effective recombination coefficient fits

We fit the effective recombination coefficients as a function of electron temperature in logarithmic space with analytical expressions for selected transitions, using a non-linear least-square algorithm. Tables 7, 8, 9, 10, 11, 12, 13 and 14 present fit parameters and maximum deviations δ [%] for four densities, $N_e = 10^2$, 10^3 , 10^4 and 10^5 cm⁻³. Only strongest optical transitions are presented, including multiplets V3, V5, V19, V20, V28, V29, V38 and V39. As the dependence of recombination coefficient on T_e at electron temperatures below 10,000 K is different from that at high temperatures (10,000 ~ 20,000 K in our case), we use different expressions for the two temperature regimes.

For the low-temperature regime, $T_{\rm e} < 10,000$ K, effective recombination coefficients are dominated by contribution from radiative recombination $\alpha_{\rm rad}$, which has a relatively simple dependence on electron temperature, $\alpha_{\rm rad} \propto T_{\rm e}^{-a}$, where $a \sim 1$. At low temperatures, dielectronic recombination through low-lying autoionizing states are also important for ions such as C II, N II, O II, Ne II (Storey 1981, 1983; Nussbaumer & Storey 1983, 1984, 1986, 1987). Considering the fact that direct radiative recombination rate is nearly a linear function of temperature in logarithm, and the deviation introduced by dielectronic recombination, we use a five-order polynomial expression to fit the effective recombination coefficient,

$$\alpha = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5,$$
(3)

where $\alpha = \log_{10} \alpha_{eff} + 15$ and $t = \log_{10} T_e$, and a_0, a_1, a_2, a_3, a_4 and a_5 are constants.

For the high-temperature regime, $10,000 \le T_e \le 20,000$ K, the contribution from dielectronic recombination, α_{DR} , can significantly exceed that of direct radiative recombination (Burgess 1964). Dielectronic recombination coefficient α_{DR} has a complex exponential dependence on T_e (Seaton & Storey 1976; Storey 1981), $\alpha_{DR} \propto T_e^{-3/2} \exp(-E/kT_e)$, where *E* is the excitation energy of an autoionizing state, to which a free electron is captured, relative to the ground state of the recombining ion (N²⁺ in our case) and *k* is the Boltzmann constant. The expression adopted for this temperature regime is,

$$\alpha = (b_0 + b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4) \times t^{b_5} \times \exp(b_6 t), \tag{4}$$

where $\alpha = \log_{10} \alpha_{\text{eff}} + 15$ and $t = T_{\text{e}}[\text{K}]/10^4$, the reduced electron temperature, and b_0 , b_1 , b_2 , b_3 , b_4 , b_5 and b_6 are constants.

In order to make the data fits accurate for the hightemperature regime, $10,000 \le T_e \le 20,000$ K, where the original calculations are carried out for only four temperature cases (log $T_e[K] = 4.0, 4.1, 4.2$ and 4.3), nine more temperature cases are calculated. For the temperature region log $T_e[K] = 3.9 \sim 4.0$, two more temperature cases are also calculated, so that the data fits near 10,000 K are accurate enough. Figure 4 is an example of the fit to the effective recombination coefficients of the N II V3 $2s^22p3p {}^3D_3^e - 2s^22p3s {}^3P_2^o \lambda 5679.56$ transition.

By using different expressions for the two temperature regimes, we manage to control the maximum fitting errors to well within 0.5 per cent.

4.3. Relative intensities within N n multiplets

As mentioned in the Section 3.4 above, the populations of the ground fine-structure levels ${}^{2}P^{o}{}_{1/2,3/2}$ of the recombining ion N²⁺ vary with electron density under typical nebular conditions. The variations are reflected in the relative intensities of the resultant recombination lines of N II, which arise from upper levels with the same orbital angular momentum quantum number *l* but of different parentage, i.e., ${}^{2}P^{o}{}_{1/2}$ and ${}^{2}P^{o}{}_{3/2}$ in the current case. A number of such recombination lines have been observed in photoionized gaseous nebulae including PNe and H II regions, and their intensity ratios can thus be used for density diagnostics.

As the relative populations of ${}^{2}P^{o}_{1/2,3/2}$ vary with N_{e} , so do the fractional intensities of individual fine-structure components within a given multiplet of N II. The most prominent N II multiplets in the optical include: V3 2s²2p3p³D^e - 2s²2p3s³P^o, V19 2s²2p3d³F^o - 2s²2p3p³D^e and V39 2s²2p4f G[7/2,9/2]^e - 2s²2p3d³F^o.

4.3.1. 2s²2p3p³D^e - 2s²2p3s³P^o (V3)

The fractional intensities of fine-structure components of Multiplet V3, $2s^22p3p^{3}D^{e} - 2s^22p3s^{3}P^{o}$, are presented in Figure 5. The strongest component is λ 5679.56, which forms from core ${}^{2}P^{o}_{3/2}$ capturing an electron plus cascades from higher states, while the second strongest component λ 5666.63 can form, in addition, from recombination of core ${}^{2}P^{o}_{1/2}$.

For the target N III, the population of the fine-structure level ²P^o_{3/2} relative to ²P^o_{1/2} increases with electron density N_e due to collisional excitation, and consequently, so does the intensity of the λ 5679.56 line relative to the λ 5666.63 line. Their intensity ratio peaks around $N_e = 2,000 \text{ cm}^{-3}$, the critical density N_c of the level ²P^o_{3/2}, and then decreases as N_e increases further. The relative intensities of all components converge to constant values at high densities ($\geq 10^5 - 10^6 \text{ cm}^{-3}$), as the relative populations of the ground fine-structure levels of the target N III approach the Boltzmann distribution.

The line ratio $I(\lambda 5679.56)/I(\lambda 5666.63)$ thus serves as a density diagnostic for nebulae of low and intermediate densities, $N_e \leq 10^5$ cm⁻³. At very low electron temperatures, where kT_e is comparable to the ${}^2P^o_{1/2} - {}^2P^o_{3/2}$ energy separation, the sensitivity to density in the components of V3 is reduced. This arises because, at very low temperatures, the states $({}^2P^o_{3/2})$ nl are populated more significantly by dielectronic capture from the $({}^2P^o_{1/2})\kappa l$ continuum than by direct recombination on N²⁺ $({}^2P^o_{3/2})$. The density dependence of the population distribution between the ${}^2P^o_{1/2}$ and ${}^2P^o_{3/2}$ is then of less importance.

4.3.2. $2s^22p3d^3F^o - 2s^22p3p^3D^e$ (V19)

The fractional intensities of fine-structure components of Multiplet V19, $2s^22p3d^3F^{\circ} - 2s^22p3p^3D^{\circ}$, are presented in Figure 6. The strongest component, $\lambda 5005.15$, forms exclusively from recombination of target $^2P^{\circ}_{3/2}$ plus cascades, while the second and third strongest components of almost identical wave-

lengths, λ 5001.48 and λ 5001.14, can form, in addition, from recombination of the ground target $^2P^o_{1/2}$.

At very low densities of about 10^2 cm^{-3} , $^2\text{Po}_{1/2}$ dominates the population of N III, and this is manifested by the intensity of the $\lambda 5005.15$ line being lower than the $\lambda 5001.48$ line and than $\lambda 5001.14$ by a further amount. As electron density increases, the intensity of the $\lambda 5005.15$ line relative to the $\lambda 5005.48/15$ lines increases and peaks around 2, 000 cm⁻³. At densities above 10^5 cm^{-3} , the fractional populations of all components converge to constant values. The trends are similar to Multiplet V3 discussed above.

The intensity ratio $I(\lambda 5005.15)/I(\lambda 5001.48 + \lambda 5001.14)$ serves as another potential density diagnostic. In reality, however, given the closeness in wavelength of the $\lambda 5005.15$ line to the [O III] $\lambda 5007$ nebular line, which is often several orders of magnitude (3 - 4) brighter, accurate measurement of $\lambda 5005.15$ line is essentially impossible.

4.3.3. $2s^22p4f G[7/2,9/2]^e - 2s^22p3d^3F^o$ (V39)

The fractional intensities of fine-structure components of Multiplet V39, $2s^22p4f G[7/2,9/2]^e - 2s^22p3d {}^{3}F^{o}$, are presented in Figure 7. The strongest component λ 4041.31 forms exclusively from recombination of target ${}^{2}P^{o}_{3/2}$ plus cascades from higher states, while the second and third strongest components, λ 4035.08 and λ 4043.53, which have comparable intensities, can form, in addition, from recombination of target ${}^{2}P^{o}_{1/2}$.

The behaviour of the intensity of the λ 4041.31 line relative to those of the λ 4035.08 and λ 4043.53 lines as a function of electron density is quite similar to those of their counterparts of Multiplets V3 and V19 discussed above.

The line ratios $I(\lambda 4041.31)/I(\lambda 4035.08)$ and $I(\lambda 4041.31)/I(\lambda 4043.53)$ can in principle serve as additional density diagnostics. There are however complications in their applications:

(1) All fine-structure components of Multiplet V39 $2s^22p4f G[7/2,9/2]^e - 2s^22p3d {}^{3}F^{o}$ are extremely faint. The strongest component $\lambda 4041.31$ is 2 – 3 times fainter than $\lambda 5679.56$, the strongest component of V3, while the latter is typically one thousand times fainter than H β in a real nebula.

(2) The λ 4041.31 line is blended with the O II recombination line λ 4041.29 of Multiplet V50c 2p²4f F[2]^o _{5/2} – 2p²3d ⁴F^e _{5/2}, while the λ 4035.08 line is blended with the O II lines λ 4035.07 of Multiplet V50b 2p²4f F[3]^o _{5/2} – 2p²3d ⁴F^e _{5/2} and λ 4035.49 of Multiplet V50b 2p²4f F[3]^o _{7/2} – 2p²3d ⁴F^e _{5/2}.

4.4. Plasma diagnostics

Unlike the UV and optical CELs, whose emissivities have an exponential dependence on T_e (Osterbrock & Ferland 2006), emissivities of heavy element ORLs have only a relatively weak, power-law dependence on T_e . The dependence varies for lines originating from levels of different orbital angular momentum quantum number *l*. Thus the relative intensities of ORLs can also be used to derive electron temperature, provided very accurate measurements can be secured (Liu 2003; Liu et al. 2004; Tsamis et al. (2004)). In the case of N II, the intensity ratio of λ 5679.56 and λ 4041.31 lines, the strongest components of Multiplets V3 $3p^{3}D^{e} - 3s^{3}P^{o}$ and V39 $4fG[9/2]^{e} - 3d^{3}F^{o}$, respectively, has a relatively strong temperature dependence, and thus can serve as a temperature diagnostic. As shown in Section 4.3 above, the N II line ratio $I(\lambda$ 5679.56)/ $I(\lambda$ 566.63) is a good density diagnostic. Combining the two line ra-

Fig. 4. Analysis fit to the effective recombination coefficients for the N II V3 3p ${}^{3}D_{3} - 3s {}^{3}P_{2}^{\circ} \lambda 5679.56$ line, at $N_{e} = 1000 \text{ cm}^{-3}$. Sub-figure (a) shows the data fit for the low-temperature regime $T_{e} < 10,000$ K, and Sub-figure (b) for the high-temperature regime $10,000 \le T_{e} \le 20,000$ K. In both Sub-figures, solid lines are fitting equations (Equ. 3 for Sub-figure (a) and Equ. 4 for (b)), and plus signs "+" are the calculated data for all the temperatures.

tios thus allows one to determine T_e and N_e simultaneously. Figure 8 shows the loci of NII recombination line ratios $I(\lambda 5679.56)/I(\lambda 5666.63)$ and $I(\lambda 5679.56)/I(\lambda 4041.31)$ for different electron temperatures and densities. With high quality measurements of the two line ratios, one can readout T_e and N_e directly from the diagram.

Ions such as N II and O II have a rich optical recombination line spectrum. Rather than relying on specific line ratios, it is probably beneficial and more robust to determine T_e and N_e by fitting all lines with a good measurement and free from blending simultaneously. Details about this approach and its application to photoionized gaseous nebulae will be the subject of a subsequent paper.

4.5. Population of excited states of N²⁺

In the current calculations of the effective recombination coefficients of N II, we have assumed that only the ground finestructure levels of the recombining ion, N²⁺ 2s²2p²P^o_{1/2,3/2}, are populated. This is a good approximation under typical nebular conditions. The first excited spectral term of N²⁺, 2s2p² ⁴P, lies 57 161.7 cm⁻¹ above the ground term (Eriksson 1983), and the population of this term is 1.75×10^{-6} relative to that of the ground term ²P^o even at the highest temperature and density considered in the current work, $T_e = 20,000$ K and $N_e = 10^6$ cm⁻³. Recombination from the 2s2p² ⁴P term is thus completely negligible.

4.6. Total recombination coefficients

Calculations presented in the current work are carried out in intermediate coupling in Case B, representing a significant improvement compared to Kisielius & Storey (2002), in which the calculations are entirely in *LS*-coupling. In our calculations, we have also considered the fact that the ground term of N²⁺ comprises two fine-structure levels, ²P^o _{1/2} and ²P^o _{3/2}, and the populations of those two levels deviate from the Boltzmann distribution under typical nebular densities. We thus treat the recombination of the high-*l* states using the close-coupling photoion-

ization data incorporating the population distribution among the ${}^{2}P_{J}^{\circ}$ levels. The critical electron density, at which the rates of collisional de-excitation and radiative decay from ${}^{2}P^{\circ}_{3/2}$ to ${}^{2}P^{\circ}_{1/2}$ are equal, is approximately 2,000 cm⁻³. At this density, our calculation shows that the populations of the ${}^{2}P^{\circ}_{1/2}$ and ${}^{2}P^{\circ}_{3/2}$ levels differ from their Boltzmann values by approximately 34% at $T_{\rm e} = 10,000$ K, The difference given by Kisielius & Storey (2002) at this density is 30%.

In Table 15, we compare our direct recombination coefficients with those calculated by Nahar (1995) and by Kisielius & Storey (2002). The calculations of Nahar (1995) and Kisielius & Storey (2002) are both in *LS*-coupling, and the N II states are not *J*-resolved. Their direct recombination coefficients are all to spectral term ${}^{2S+1}L^{\pi}$. Our present calculations are in intermediate coupling, and recombinations are all to *J*-resolved levels. In order to compare to their results, we sum the direct recombination coefficients to all the fine-structure levels belonging to individual spectral terms.

At 1,000 K, the differences between the results of Kisielius & Storey (2002) and ours are less than 10% for most cases, except for the state $2s2p^3 {}^3S^{\circ}$. For this state, our direct recombination coefficient is 50% larger than that of Kisielius & Storey (2002).

At this temperature (1, 000 K is about 0.1 eV), we believe we have found out the exact energy positions for all the resonances below 0.1 Ryd above the ionization threshold of N III $2p {}^{2}P^{o}_{1/2}$. This region contains most of the important resonances that dominate the total recombination rate. In our photoionization calculations, all resonances from those of widths as narrow as 10^{-9} Ryd to those of widths as wide as 10^{-4} Ryd, are properly resolved using a highly adaptive energy mesh. There are typically about 22 points sampling each resonance. In the calculation by Kisielius & Storey (2002), the number is about ten, while in Nahar (1995) a fixed interval of 0.0004 Ryd is used in this energy range.

The three low-lying resonances, ³P, ³D and ³F belonging to the $2s2p^{2}(^{4}P)$ 3d configuration, are situated between 0.075 and 0.085 Ryd above the ionization threshold of ²P^o_{1/2} (Kisielius & Storey 2002). For the state $2s2p^{3}{}^{3}S^{o}$, one of the main sources of recombination is from the term ³P belonging to the $2s2p^{2}(^{4}P)$ 3d

Fig. 5. Fractional intensities of components of Multiplet V3: $2s^22p3p^{3}D^{e} - 2s^22p3s^{3}P^{o}$. The numbers in brackets following the wavelength labels are the total angular momentum quantum numbers $J_2 - J_1$ of the upper to lower levels of the transition. Components from upper levels of the same total angular momentum quantum number J are represented by same colour and line type. Four temperature cases, $log_{10}T_e = 2.5$, 3.0, 3.5 and 4.0 K, are presented.

configuration. There are three fine-structure resonance levels of the ³P term with quantum numbers J = 0, 1 and 2. The full widths of these three resonances are 1.02×10^{-4} Ryd for ³P₀^e, 1.35×10^{-5} Ryd for ³P₁^e and 1.42×10^{-5} Ryd for ³P₂^e. The steps of energy mesh adopted for the three resonances are: 4.64×10^{-6} Ryd for ³P₀^e, 6.14×10^{-7} Ryd for ³P₁^e and 6.46×10^{-7} Ryd for ³P₂^e.

Our calculations are carried out entirely in intermediate coupling. This leads to a high recombination rate to the $2s2p^3 \, {}^3S^o$ state, produced by radiative intercombination transitions (transitions between levels of different total spins) from levels above the ionization threshold to the $2s2p^3 \, {}^3S^o$ level. The widths of such intercombination transitions are usually much narrower than those of allowed transitions. For example, the resonance level ${}^5P^e_1$ belonging to the configuration $2s2p^2({}^4P)$ 3d lies about 0.051 Ryd above the ionization threshold, and it can decay to the level $2s2p^3 \, {}^3S^o_1$ via an intercombination transition. The width of this resonance is 2.49×10^{-9} Ryd, and the energy interval of the photoionization mesh is set to 1.13×10^{-10} Ryd. Intercombination transitions were not considered in Kisielius & Storey (2002), given the calculations were in *LS*-coupling.

At 1,000 K, the differences between the calculations of Nahar (1995) and ours are smaller than 10%, except for states belonging to the $2s2p^3$ configuration.

At 10,000 K, the differences between the calculations of Kisielius & Storey (2002) and ours are all better than 10%. The agreement for the state $2s2p^{3} {}^{3}S^{o}$ is particularly good.

At this temperature, the differences between the results of Nahar (1995) and ours are within 15%, except for states ${}^{3}S^{0}$, ${}^{3}P^{0}$ and ${}^{3}D^{0}$ belonging to the configuration $2s2p^{3}$, where the differences are larger than 30%. The large discrepancies are likely to be caused by the coarse energy mesh adopted by Nahar (1995) for the photoionization calculations, leading to the recombination rates to states belonging to the $2s2p^{3}$ configuration being underestimated.

In Table 15, we compare our total direct recombination coefficients, which are the sum of all the direct recombination coefficients to individual atomic levels with $n \le 35$, with those of Nahar (1995) and Kisielius & Storey (2002). At 1,000 K, our total recombination coefficient is 13 per cent lower than that of Kisielius & Storey (2002). That is probably because the sum only reaches up to n = 35. At 10,000 K, our total recombination coefficient is higher than the other two.

5. Conclusion

Effective recombination coefficients for the N⁺ recombination line spectrum have been calculated in Case B for a wide range of electron density and temperature. The results are fitted with analytical formulae as a function of electron temperature for different electron densities, to an accuracy of better than 0.5%.

Fig. 6. Same as Fig. 5 but for Multiplet V19: $2s^22p3d {}^{3}F^{\circ} - 2s^22p3p {}^{3}D^{\circ}$.

The high quality basic atomic data adopted in the current work, including photoionization cross-sections, bound-bound transition probabilities, and bound state energy values, were obtained from R-matrix calculations for all bound states with $n \leq 11$ in the intermediate coupling scheme. All major resonances near the ionization thresholds were properly resolved. In calculating the N II level populations, we took into account the fact that the populations of the ground fine-structure levels of the recombining ion N²⁺ deviate from the Boltzmann distribution. Fine-structure dielectronic recombination, which occurs through high Rydberg states lying between the doublet ²P^o_{1/2,3/2} thresholds and is very effective at low temperatures (≤ 250 K), was also included in the current investigation. The calculations extend to $l \leq 4$.

The effective recombination coefficients for the N π recombination spectrum presented in the current work represent recombination processes under typical nebular conditions. The sensitivity of individual lines within a multiplet to the density and temperature of the emitting medium opens up the possibility of electron temperature and density diagnostics and abundance determinations which were not possible with earlier theory.

References

Badnell, N. R., 1986, J. Phys. B 19, 3827
Baker, J. G., Menzel, D. H., 1938, ApJ 88, 52
Berrington, K. A., Burke, P. G., Butler, K., Seaton, M. J., Storey, P. J., Taylor, K. T., Yu Yan, 1987, J. Phys. B 20, 6379
Burgess, A., Seaton, M. J., 1960, MNRAS 120, 121
Burgess, A., 1964, ApJ 139, 776

Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)

Eissner, W., Jones, M., Nussbaumer, H., 1974, Comp. Phys. Commun. 8, 270 Eriksson, K. B. S., 1983, Physica Scripta 28, 593

Escalante, V., Victor, G. A., 1990, ApJS 73, 513

Fang, Z., Kwong, V. H. S., Parkinson, W. H., 1993, ApJ 413, L141

Gailitis, M., 1963, Sov. Phys. JETP 17, 1328

Hirata, R., Horaguchi, T., 1995, Atomic Spectral Line List, Kyoto University Hummer, D. G., Berrington, K. A., Eissner, W., Pradhan, A. K., Saraph, H. E., Tully, J. A., 1993, A&A 279, 298

Hummer, D. G., Storey, P. J., 1987, MNRAS 224, 801

Kisielius, R., Storey, P. J., 1999, A&AS, 137, 157

Kisielius, R., Storey, P. J., Davey, A. R., Neale, L., 1998, A&AS 133, 257

Kisielius, R., Storey, P. J., 2002, A&A 387, 1135

Liu, X.-W., 2003, In: Kwok, S., Dopita, M., Sutherland, R. (eds.), IAU Symp. #209, Planetary Nebulae: Their evolution and Role in the Universe (San Francisco: ASP) P.339

Liu, X.-W., 2006a, In: Walsh, J., Stanghellini, L., Douglas, N. (eds.), Planetary Nebulae beyond the Milky Way (Berlin: Springer-Verlag) P.169

Liu, X.-W., Barlow, M. J., Zhang, Y., Bastin, R. J., Storey, P. J., 2006, MNRAS 368, 1959

Liu, X.-W., 2006b, In: Barlow, M. J., Méndez, R. H. (eds.), IAU Symp. #234, Planetary Nebulae in our Galaxy and Beyond, Proceedings of IAU Symposium (Cambridge: Cambridge University Press) P.219

Liu, X.-W., Storey, P. J., Barlow, M. J., Clegg, R. E. S., 1995, MNRAS 272, 369

Liu, X.-W., Storey, P. J., Barlow, M. J., Danziger, I. J., Cohen, M., Bryce, M., 2000, MNRAS 312, 585

Liu, X.-W., Luo, S.-G., Barlow, M. J., Danziger, I. J., Storey, P. J., 2001, MNRAS 327, 141

Liu, Y., Liu, X.-W., Barlow, M. J., Luo, S.-G., 2004, MNRAS 353, 1251

Luo, S.-G., Liu, X.-W., Barlow, M. J., 2001, MNRAS 326, 1049

Nahar, S. N., 1995, ApJS 101, 423

- Nussbaumer, H., Storey, P. J., 1978, A&A 64, 139
- Nussbaumer, H., Storey, P. J., 1979, A&A 71, L5
- Nussbaumer, H., Storey, P. J., 1983, A&A 126, 75

Fig. 7. Same as Fig. 5 but for Multiplet V39: $2s^22p4f G[7/2,9/2]^e - 2s^22p3d {}^{3}F^{o}$.

- Nussbaumer, H., Storey, P. J., 1984, A&AS 56, 293
- Nussbaumer, H., Storey, P. J., 1986, A&AS 64, 545
- Nussbaumer, H., Storey, P. J., 1987, A&AS 69, 123
- Osterbrock, D. E., Ferland, G. J., 2006, Astrophysics of Gaseous Nebulae and
- Active Galactic Nuclei, 2nd edition (Sausalito, California: University Science
- Books) Chapter 5, p.108
- Peach, G., 1967, Mem. R. Astron. Soc. 71, 1 Péquignot, D., Petitjean, P., Boisson, C., 1991, A&A 251, 680
- Seaton, M. J., 1987, J. Phys. B 20, 6363
- Seaton, M. J., Storey, P. J., 1976, Atomic Processes and Applications
- (Amsterdam: North-Holland Publishing Company) p.134
- Storey, P. J., 1981, A&A 195, 27 Storey, P. J., 1983, IAU Symp. 103. Planetary nebulae, ed. D.R. Flower, Reidel,
- Dordrecht, p.199 Storey, P. J., 1994, A&A 282, 999
- Storey, P. J., Hummer, D. G., 1991, Comp. Phys. Commun. 66, 129
- Storey, P. J., Hummer, D. G., 1995, MNRAS 272, 41
- Tsamis, Y. G., Barlow, M. J., Liu, X.-W., Storey, P. J., Danziger, I. J., 2004, MNRAS, 353, 953

Fig. 8. Loci of the N II recombination line ratios $I(\lambda 5679.56)/I(\lambda 5666.63)$ and $I(\lambda 5679.56)/I(\lambda 4041.31)$ for different T_e 's and N_e 's.

Table 3. Case B effective recombination coefficients $[10^{-15} \text{ cm}^3 \text{ s}^{-1}]$ for electron density $N_e = 10^2 \text{ cm}^{-3}$.

						<i>T</i> . [K]			
			·						
Transition	λ [A]		125	500	1000	5000	10,000	15,000	20,000
6h – 5g									
$2p6h I[13/2]_6^e - 2p5g H[11/2]_5^o$	18622.57		1.54e+3	3.44e+2	1.43e+2	1.47e+1	5.24e+0	2.88e+0	1.84e+0
$2p6h H[11/2]_6^e - 2p5g G[9/2]_5^o$	18481.01		1.71e+3	3.75e+2	1.55e+2	1.66e+1	6.01e+0	3.33e+0	2.14e+0
$2p6h H[11/2]_5^e - 2p5g G[9/2]_4^o$	17964.67		1.42e+3	3.12e+2	1.29e+2	1.38e+1	5.00e+0	2.76e+0	1.78e+0
$2p6h H[9/2]_5^{e} - 2p5g G[7/2]_4^{o^{-1}}$	18480.67		1.37e+3	3.02e+2	1.25e+2	1.32e+1	4.80e+0	2.65e+0	1.70e+0
$2p6hG[9/2]_4^{e} - 2p5gF[7/2]_3^{o}$	18549.42		1.09e+3	2.40e+2	9.94e+1	1.05e+1	3.82e+0	2.11e+0	1.36e+0
$2 p6h G[7/2]_4^{\acute{e}} - 2 p5g F[5/2]_3^{\acute{o}}$	18679.36		9.71e+2	2.18e+2	9.02e+1	9.19e+0	3.24e+0	1.78e+0	1.14e+0
$2p6h I[13/2]_7^{e} - 2p5g H[11/2]_6^{o}$	18622.64		1.80e+3	4.02e+2	1.67e+2	1.72e+1	6.12e+0	3.36e+0	2.15e+0
$2p6h H[9/2]_4^6 - 2p5g G[7/2]_3^6$	18533.26		1.59e+3	3.97e+2	2.04e+2	3.69e+1	1.59e+1	9.50e+0	6.43e+0
$2p6h I[11/2]_6^{e} - 2p5g H[9/2]_5^{o}$	18546.53		2.41e+3	6.04e+2	3.10e+2	5.61e+1	2.41e+1	1.44e+1	9.78e+0
$2 p 6 h I [11/2]_5^{e} - 2 p 5 g H [9/2]_4^{o}$	19170.43		2.01e+3	5.02e+2	2.58e+2	4.66e+1	2.01e+1	1.20e+1	8.12e+0
$2p6h H[9/2]_5^{e} - 2p5g G[7/2]_4^{o}$	18533.26		2.00e+3	5.00e+2	2.57e+2	4.64e+1	2.00e+1	1.19e+1	8.09e+0
69 - 5f									
$2p6g G[9/2]^{\circ}_{4} - 2p5f F[7/2]^{\circ}_{2}$	17930.73		2.74e+2	8.54e+1	5.08e+1	1.34e+1	6.66e+0	4.29e+0	3.07e+0
$2p6g G[9/2]_{5}^{6} - 2p5f F[7/2]_{6}^{6}$	18277.37		3.41e+2	1.06e+2	6.32e+1	1.66e + 1	8.27e+0	5.33e+0	3.82e+0
$2p6g F[7/2]_{0}^{2} - 2p5f D[5/2]_{0}^{4}$	18230.35		2.01e+2	6.25e+1	3.72e+1	9.79e+0	4.87e+0	3.14e+0	2.24e+0
$2p6g F[7/2]_4^6 - 2p5f D[5/2]_3^6$	18222.01		2.64e+2	8.22e+1	4.89e+1	1.29e+1	6.41e+0	4.13e+0	2.95e+0
6g Af									
$2n6\sigma G[9/2]^{\circ} = 2n4f F[7/2]^{\circ}$	6413 23		2 55e+2	7 95e+1	4 73e+1	1 25e+1	6 20e+0	4.00e+0	2 86e+0
$2pog G[9/2]_4 = 2p H f G[7/2]_3$ $2p6g G[9/2]_9 = 2p4f G[7/2]_9$	6556.32		1.56e+2	4.87e+1	2.90e+1	7.64e+0	3.80e+0	2.45e+0	1.76e+0
$2p6g G[9/2]^2 - 2p4f F[7/2]^6$	6456.97		3.26e+2	1.02e+2	6.05e+1	1.59e+1	7.93e+0	5.11e+0	3.66e+0
$2p6g F[7/2]_{0}^{\circ} - 2p4f D[5/2]_{0}^{\circ}$	6446.53		2.24e+2	6.97e+1	4.15e+1	1.09e+1	5.43e+0	3.50e+0	2.49e+0
$2p6g F[7/2]_4^6 - 2p4f D[5/2]_3^6$	6445.34		2.96e+2	9.23e+1	5.49e+1	1.45e+1	7.19e+0	4.63e+0	3.31e+0
cf 24									
$2n ef E[7/2]^{e} - 2n 2d(^{3}E^{0})$	2504 10	2	2 720 1 2	5 570 1	2.00a+1	0.20 ± 0	5 00a i 0	2 5 2 0 1 0	275010
$2porr[7/2]_{4}^{2} - 2porr[7]_{3}^{2}$	2504.19	*	5.72e+2	5.5/e+1	3.09e+1	9.200+0	5.040+0	3.35e+0	2.750+0
$2porr [1/2]_3 - 2porr [2]_2$	2500.67	*	4.52e+2	0.44e + 1	5.58e+1	1.0/e+1	3.94e+0	4.15e+0	5.22e+0
$2poi F[5/2]_{2}^{2} - 2p3d(^{3}D_{1}^{0})$	2560.24	*	2.90e+2	4.28e+1	2.36e+1	6.9/e+0	3.85e+0	2.66e+0	2.03e+0
$2pot F[5/2]_3^2 - 2p3d(^3D_2^0)$	2561.95	*	2.6/e+2	3.94e+1	2.18e+1	6.45e+0	3.57e+0	2.4/e+0	1.93e+0

 $[\]frac{1}{2}$ The asterisk "*" denotes this transition wavelength was derived from the experimentally known energies of the upper and lower states. The asterisks in Tables 4, 5 and 6 have the same meaning.

						$T_{\rm e}[{ m K}]$			
Transition	λ[Å]		125	500	1000	5000	10,000	15,000	20,000
6d - 3p	1 (90, 27		0.15-+0	2 27- 1	1.04- 1	6.94-+0	4 22- + 0	2 42- + 0	2 (5-10
$2pod({}^{3}F_{3}^{0}) - 2p3p({}^{3}D_{2}^{0})$	1680.27		2.15e+2	3.3/e+1	1.94e+1	6.84e+0	4.33e+0	3.42e+0	3.65e+0
5g - 4f	10100 45		1.06 . 2	0.440	1.02 . 2	1.00 . 1	2.06 .0	2.12 . 0	1 27 . 0
$2p3g F[5/2]_{3}^{\circ} - 2p4I D[3/2]_{2}^{\circ}$ $2p5g H[11/2]_{0}^{\circ} - 2p4f G[9/2]_{0}^{\circ}$	10108.45	*	1.06e+3 2 39e+3	2.44e+2 5.48e+2	1.03e+2 2 30e+2	1.08e+1 2.45e+1	3.86e+0 8.82e+0	2.12e+0 4.86e+0	1.3/e+0 3.11e+0
$2p5g H[11/2]_6^6 - 2p4f G[9/2]_4^6$	10025.27	*	1.92e+3	4.41e+2	1.86e+2	1.98e+1	7.11e+0	3.92e+0	2.52e+0
$2p5gG[9/2]_4^o - 2p4fG[7/2]_3^e$	9941.81	*	6.30e+2	1.67e+2	8.94e+1	1.84e+1	8.42e+0	5.20e+0	3.61e+0
$2p5gG[9/2]_4^o - 2p4fF[7/2]_3^e$	9718.59	*	1.95e+3	5.17e+2	2.77e+2	5.72e+1	2.61e+1	1.61e+1	1.12e+1
$2p3gG[7/2]_{3}^{\circ} - 2p4IF[5/2]_{2}^{\circ}$ $2p5gH[9/2]_{9}^{\circ} - 2p4fG[7/2]_{9}^{\circ}$	10070.12 9969 33	*	1.03e+3 1.60e+3	2.32e+2 3.58e+2	9.74e+1 1.50e+2	1.0/e+1 1.66e+1	3.94e+0 6.10e+0	2.20e+0 3.40e+0	1.43e+0 2.21e+0
$2p5gG[7/2]_{4}^{o} - 2p4fF[5/2]_{2}^{e}$	10085.72	*	1.40e+3	3.15e+2	1.33e+2	1.45e+1	5.35e+0	2.98e+0	1.94e+0
$2p5gG[9/2]_5^6 - 2p4fG[7/2]_4^6$	10126.15	*	8.05e+2	2.13e+2	1.14e+2	2.36e+1	1.08e+1	6.64e+0	4.61e+0
$2p5gG[9/2]_5^{\circ} - 2p4fF[7/2]_4^{\circ}$	9891.10	*	2.47e+3	6.54e+2	3.51e+2	7.24e+1	3.30e+1	2.04e+1	1.42e+1
$2p5g H[9/2]_4^6 - 2p4f G[7/2]_3^6$ $2p5g F[7/2]_9^6 - 2p4f D[5/2]_9^6$	10118.53	*	1.31e+3 1.65e+3	2.94e+2 4 36e±2	1.23e+2 2 34e+2	1.36e+1	5.01e+0 2 20e+1	2.79e+0 1 36e+1	1.81e+0 9.41e+0
$2p5g F[7/2]_3 = 2p4f F[5/2]_2$ $2p5g F[7/2]_4 = 2p4f F[5/2]_2^6$	10250.19	*	3.60e+2	9.52e+1	5.11e+1	1.05e+1	4.80e+0	2.96e+0	2.05e+0
$2p5g F[7/2]_4^o - 2p4f D[5/2]_3^e$	9865.42	*	2.18e+3	5.78e+2	3.10e+2	6.38e+1	2.91e+1	1.80e+1	1.25e+1
5f 1J									
$2p5f F[7/2]^{e}_{e} - 2p4d(^{3}D^{0}_{e})$	9281.06	*	4.14e+2	7.22e+1	4.03e+1	1.12e+1	5.99e+0	4.06e+0	3.10e+0
$2p5f F[7/2]_3^e - 2p4d(^3F_2^o)$	8772.93	*	3.05e+2	5.31e+1	2.98e+1	8.34e+0	4.46e+0	3.03e+0	2.32e+0
$2p5f F[5/2]_2^6 - 2p4d(^3D_1^0)$	9242.02	*	3.31e+2	5.72e+1	3.19e+1	8.86e+0	4.72e+0	3.20e+0	2.42e+0
$2p5f F[5/2]_3^{\tilde{e}} - 2p4d(^1D_2^{\tilde{o}})$	8983.28	*	3.15e+2	5.44e+1	3.04e+1	8.45e+0	4.50e+0	3.05e+0	2.33e+0
5f – 3d									
$2p5fG[9/2]_{\epsilon}^{e} - 2p3d(^{3}F_{4}^{o})$	2885.27	*	4.16e+2	1.08e+2	4.89e+1	6.38e+0	2.53e+0	1.49e+0	1.09e+0
$2p5f D[5/2]_3^e - 2p3d(^3P_2^0)$	3082.20	*	2.35e+2	6.20e+1	3.06e+1	5.91e+0	2.86e+0	1.86e+0	1.36e+0
$2p5fG[7/2]_4^{e} - 2p3d({}^3F_3^{o})$	2884.25	*	1.71e+2	4.44e+1	2.19e+1	4.22e+0	2.04e+0	1.34e+0	1.07e+0
$2p5fG[7/2]_{3}^{2} - 2p3d({}^{3}F_{2}^{0})$	2879.75	*	1.76e+2	4.58e+1	2.25e+1	4.32e+0	2.09e+0	1.38e+0	1.10e+0
$2p5f F[7/2]_4^e - 2p3d(^3D_3^e)$ $2p5f C[7/2]_4^e - 2p3d(^3E_3^e)$	29/6.9/	*	8.5/e+2	1.49e+2	8.35e+1	2.33e+1	1.24e+1	8.41e+0	6.41e+0
$2p51G[7/2]_4 - 2p5d(T_3)$ $2p5f F[7/2]_6^2 - 2p3d(^1D_9^2)$	2942.23	*	3.20e+2 3.95e+2	6.88e+1	3.12e+1 3.85e+1	1.430 ± 1 $1.08e \pm 1$	5.77e+0	3.10e+0 3.92e+0	3.930 ± 0 $3.00e\pm0$
$2p5f G[7/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	2892.87	*	6.23e+2	1.09e+2	6.08e+1	1.70e+1	9.10e+0	6.18e+0	4.73e+0
$2p5f F[5/2]_2^{e} - 2p3d(^{3}D_1^{o})$	2973.60	*	6.39e+2	1.10e+2	6.15e+1	1.71e+1	9.11e+0	6.17e+0	4.67e+0
$2p5f F[5/2]_{3}^{\overline{e}} - 2p3d(^{3}D_{2}^{\overline{o}})$	2975.95	*	5.96e+2	1.03e+2	5.74e+1	1.60e+1	8.52e+0	5.78e+0	4.41e+0
$2p5fF[5/2]_3^e - 2p3d(^1D_2^0)$	2943.51	*	3.98e+2	6.88e+1	3.84e+1	1.07e+1	5.70e+0	3.86e+0	2.95e+0
5d – 3p									
$2p5d(^{3}F_{3}^{o}) - 2p3p(^{3}D_{2}^{e})$	1858.42		6.42e+2	9.05e+1	4.97e+1	1.60e+1	9.81e+0	7.59e+0	7.84e+0
$4f - 3d^{1}P^{o}$									
$2p4f D[5/2]_2^e - 2p3d(^1P_1^o)$	4694.64	*	6.87e+2	1.67e+2	7.81e+1	1.28e+1	5.73e+0	3.57e+0	2.52e+0
$4f - 3d^3P^o$									
$2p4f D[5/2]_2^e - 2p3d(^3P_1^o)$	4442.01	*	5.74e+2	1.40e+2	6.53e+1	1.07e+1	4.79e+0	2.98e+0	2.10e+0
$2p4f D[5/2]_3^{e} - 2p3d(^3P_2^{o})$	4432.74	*	2.03e+3	4.95e+2	2.32e+2	3.79e+1	1.70e+1	1.06e+1	7.52e+0
$4f - 3d^{3}D^{0}$									
$2p4f D[5/2]^{e}_{a} - 2p3d(^{3}D^{o}_{a})$	4179.67	*	4.78e+2	1.17e+2	5.45e+1	8.92e+0	4.01e+0	2.50e+0	1.77e+0
$2p4f F[7/2]_4^e - 2p3d(^3D_3^o)$	4199.98	*	4.27e+2	1.06e+2	5.14e+1	9.35e+0	4.34e+0	2.77e+0	2.10e+0
$2p4f F[7/2]_3^{e} - 2p3d(^3D_2^{o})$	4195.97	*	2.28e+2	5.67e+1	2.76e+1	5.01e+0	2.33e+0	1.49e+0	1.13e+0
$2p4f F[7/2]_4^{\tilde{e}} - 2p3d(^3D_3^{\tilde{o}})$	4241.79	*	4.47e+3	9.60e+2	5.01e+2	1.07e+2	5.15e+1	3.30e+1	2.42e+1
$2p4f F[7/2]_{3}^{e} - 2p3d(^{3}D_{3}^{o})$	4242.50	*	2.23e+2	4.79e+1	2.50e+1	5.39e+0	2.59e+0	1.66e+0	1.22e+0
$2p4I F[7/2]_{3}^{2} - 2p3d(^{3}D_{2}^{0})$ $2p4I F[5/2]^{e} - 2p2d(^{3}D_{2}^{0})$	4237.05	*	1.0/e+3	2.29e+2	1.20e+2	2.58e+1	1.24e+1	7.95e+0	5.83e+0
$2p41 F [5/2]_2^2 - 2p3d(^3D_1^2)$ $2p4f F [5/2]_2^2 - 2p3d(^3D_1^2)$	4230.93 4241.76	*	2.55e+3 2.45e+3	5.36e+2	2.96e+2 2.85e+2	6.34e+1	3.20e+1 3.06e+1	∠.06e+1 1.97e+1	1.31e+1 1.45e+1
-r · · · · · · · · · · · · · · · · · · ·	.2.11.70		2.10010	2.50012	2.00012	0.0 10 1 1	2.500 11	1.27011	1.10011
$4f - 3d^{1}F^{0}$									
$2p4fG[9/2]_4^e - 2p3d({}^1F_3^o)$	4530.41	*	1.78e+3	4.19e+2	1.81e+2	2.09e+1	7.89e+0	4.56e+0	3.28e+0
$2p+1 G[7/2]_4^2 - 2p3d(^{2}F_3^{2})$ $2p4f F[5/2]_4^2 - 2p3d(^{1}F_3^{0})$	4 <i>552.52</i> 4608.09	*	9.05e+2 2.55e+2	2.39e+2 5.59e+1	2.98e+1	∠.11e+1 6.62e+0	3.20e+0	2.06e+0	4.74e+0 1.51e+0
-r [0, 2]3 2pod(13)			2.00012	0.00011	2.75011	0.02010	2.23010	2.00010	1.0.1010
$4f - 3d^3F^0$			a						
$2p4f D[3/2]_2^e - 2p3d({}^{3}F_3^e)$ $2p4f D[3/2]_2^e - 2p3d({}^{3}F_3^e)$	4011.82	*	2.45e+0	5.81e-1	2.49e - 1	2.79e-2	1.03e-2	5.81e-3	3.81e-3
$2p41 D[5/2]_2^2 - 2p3d(^3F_2^0)$	4002.28	*	1.15e-1	2.72e-2	1.1/e-2	1.31e-3	4.85e-4	2./2e-4	1./9e-4

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,000
$2p4f D[3/2]^{e}_{e} - 2p3d(^{3}F^{o}_{e})$	4002.87	*	3.29e+0	7.75e-1	3.32e-1	3.71e-2	1.37e-2	7.70e-3	5.03e-3
$2p4f D[5/2]_{0}^{e} - 2p3d({}^{3}F_{0}^{e})$	4023.95	*	7.42e+0	1.81e+0	8.44e-1	1.38e-1	6.19e-2	3.85e-2	2.72e-2
$2p4f D[5/2]_{0}^{2} - 2p3d(^{3}F_{0}^{0})$	4014.35	*	7.42e-1	1.81e-1	8.44e-2	1.38e-2	6.19e-3	3.85e-3	2.72e-3
$2p4f D[5/2]_{2}^{e} - 2p3d({}^{3}F_{4}^{e})$	4037.96	*	1.77e+1	4.31e+0	2.01e+0	3.30e-1	1.48e-1	9.23e-2	6.54e-2
$2p4f D[5/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4024.71	*	4.37e-1	1.07e-1	4.98e-2	8.16e-3	3.66e-3	2.28e-3	1.62e-3
$2p4f D[5/2]_{0}^{2} - 2p3d(^{3}F_{0}^{3})$	4015.11	*	1.37e-2	3.34e-3	1.56e - 3	2.56e-4	1.15e-4	7.15e-5	5.07e-5
$2p4fG[9/2]^{e} - 2p3d(^{3}F^{0})$	4039.34	*	5.22e+1	1.23e+1	5.29e+0	6.11e-1	2.31e-1	1.34e-1	9.62e-2
$2p4fG[9/2]_{4}^{e} - 2p3d(^{3}F_{2}^{o})$	4026.08	*	8.35e+2	1.96e+2	8.45e+1	9.77e+0	3.70e+0	2.14e+0	1.54e+0
$2p4fG[9/2]_{e}^{e} - 2p3d({}^{3}F_{0}^{e})$	4041.31	*	3.34e+3	7.86e+2	3.37e+2	3.80e+1	1.41e+1	8.02e+0	5.57e+0
$2p4fG[7/2]^{e} - 2p3d(^{3}F_{0}^{4})$	4056.91	*	3.35e+2	8.30e+1	4.04e+1	7.34e+0	3.40e+0	2.18e+0	1.65e+0
$2p4fG[7/2]^{e} - 2p3d(^{3}F_{0}^{o})$	4043.53	*	1.91e+3	4.73e+2	2.30e+2	4.18e+1	1.94e+1	1.24e+1	9.38e+0
$2p4fG[7/2]_{2}^{e} - 2p3d(^{3}F_{2}^{e})$	4058.16	*	8.42e+0	2.09e+0	1.02e+0	1.85e-1	8.58e-2	5.49e-2	4.16e-2
$2p4fG[7/2]_{0}^{2} - 2p3d({}^{3}F_{0}^{2})$	4044.78	*	3.05e+2	7.58e+1	3.68e+1	6.69e+0	3.11e+0	1.99e+0	1.51e+0
$2p4fG[7/2]_{o}^{o} - 2p3d({}^{3}F_{o}^{o})$	4035.08	*	2.03e+3	5.04e+2	2.45e+2	4.45e+1	2.06e+1	1.32e+1	1.00e+1
$2p4f F[7/2]^{e} - 2p3d({}^{3}F^{o})$	4095.90	*	3.43e+2	7.36e+1	3.84e+1	8.24e+0	3.95e+0	2.53e+0	1.85e+0
$2p4f F[7/2]_4^{e} - 2p3d(^3F_{0}^{o})$	4082.27	*	8.50e+2	1.82e+2	9.51e+1	2.04e+1	9.79e+0	6.28e+0	4.59e+0
$2p4f F[7/2]_4^2 = 2p3d(^3F_2^0)$	4096.57	*	1.28e+1	2.74e+0	1.43e+0	3.09e-1	1.48e - 1	9.52e-2	6.97e-2
$2p4f F[7/2]^{e} - 2p3d({}^{3}F^{o})$	4082.93	*	5.02e+1	1.08e+1	5.63e+0	1.21e+0	5.83e-1	3.75e-1	2.75e-1
$2p4f F[7/2]_{3}^{2} = 2p3d(^{3}F_{2}^{0})$	4073.05	*	9.85e+2	2.11e+2	1.10e+2	2.38e+1	1.14e+1	7.34e+0	5.38e+0
$2p4f F[5/2]_{3}^{e} - 2p3d(^{3}F_{2}^{o})$	4086.83	*	3.18e+1	6.95e+0	3.70e+0	8.24e-1	3.99e-1	2.57e-1	1.88e-1
$2p4f F[5/2]_2^2 = 2p3d(^3F_2^0)$	4076.93	*	3.05e+2	6.68e+1	3.55e+1	7.92e+0	3.83e+0	2.47e+0	1.81e+0
$2p4f F[5/2]_{0}^{2} - 2p3d({}^{3}F_{0}^{0})$	4100.97	*	1.11e+1	2.43e+0	1.29e+0	2.87e-1	1.39e-1	8.95e-2	6.57e-2
$2p4f F[5/2]_{a}^{a} - 2p3d(^{3}F_{a}^{a})$	4087.31	*	2.16e+2	4.74e+1	2.52e+1	5.61e+0	2.71e+0	1.75e+0	1.28e+0
$2p4f F[5/2]_{e}^{e} - 2p3d(^{3}F_{0}^{o})$	4077.40	*	4.02e-1	8.80e-2	4.68e-2	1.04e-2	5.03e-3	3.24e-3	2.38e-3
$4f - 3d^{-1}D^{o}$									
$2p4f F[7/2]_{3}^{e} - 2p3d(^{1}D_{2}^{0})$	4171.60	*	2.05e+3	4.39e+2	2.29e+2	4.95e+1	2.38e+1	1.53e+1	1.12e+1
$2p4f F[5/2]_2^e - 2p3d(^1D_2^o)$	4175.66	*	3.75e+2	8.19e+1	4.36e+1	9.71e+0	4.70e+0	3.03e+0	2.22e+0
$2p4f F[5/2]_3^e - 2p3d(^1D_2^0)$	4176.16	*	1.56e+3	3.43e+2	1.82e+2	4.05e+1	1.96e+1	1.26e+1	9.27e+0
4d - 4p									
$2p4d(^{3}P_{1}^{o}) - 2p4p(^{3}S_{1}^{e})$	13858.59	*	1.27e+2	3.06e+1	1.51e+1	3.20e+0	1.72e+0	1.23e+0	1.05e+0
$2p4d(^{3}P_{2}^{0}) - 2p4p(^{3}S_{1}^{e})$	13947.86	*	2.02e+2	4.72e+1	2.51e+1	6.65e+0	3.85e+0	2.85e+0	2.68e+0
$2p4d(^{3}P_{2}^{6}) - 2p4p(^{3}P_{2}^{6})$	13425.85	*	1.04e+2	2.43e+1	1.29e+1	3.42e+0	1.98e+0	1.47e+0	1.38e+0
$2p4d(^{3}D_{2}^{0}) - 2p4p(^{3}P_{2}^{e})$	14195.22	*	3.63e+2	7.42e+1	3.93e+1	1.01e+1	5.57e+0	3.98e+0	3.62e+0
$2p4d(^{3}D_{3}^{o}) - 2p4p(^{3}D_{3}^{e})$	13436.61	*	1.73e+2	3.53e+1	1.87e+1	4.81e+0	2.65e+0	1.89e+0	1.72e+0
$2p4d(^{3}D_{2}^{0}) - 2p4p(^{1}P_{1}^{e})$	12349.30	*	3.22e+2	6.24e+1	3.47e+1	1.03e+1	5.94e+0	4.35e+0	3.98e+0
$2p4d(^{3}D_{1}^{0}) - 2p4p(^{1}P_{1}^{e})$	12389.41	*	2.74e+2	4.07e+1	2.23e+1	6.77e+0	3.93e+0	2.86e+0	2.44e+0
$2p4d({}^{3}F_{4}^{0}) - 2p4p({}^{3}D_{2}^{e})$	14358.63	*	3.97e+2	1.03e+2	4.78e+1	7.38e+0	3.32e+0	2.13e+0	1.66e+0
$2p4d({}^{3}F_{3}^{o}) - 2p4p({}^{3}D_{2}^{e})$	14337.71	*	1.28e+3	1.82e+2	9.72e+1	2.85e+1	1.68e+1	1.26e+1	1.25e+1
$2p4d({}^{3}F_{2}^{o}) - 2p4p({}^{3}D_{1}^{e})$	14364.86	*	3.33e+2	6.06e+1	3.54e+1	1.20e+1	7.36e+0	5.68e+0	5.84e+0
4d - 3n									
$2n4d(^{3}P^{0}) - 2n3n(^{3}P^{e})$	2496 81	*	$1.48e \pm 2$	3.45e+1	1.83e+1	4 87e+0	2 82e±0	2 09e±0	1.96e±0
$2p 4d(^{3}D^{0}) - 2p 3p(^{3}P^{e})$	2522.24	*	6 15e+2	1.26e+2	6.66e+1	1.71e+1	9.44e+0	6.75e+0	6.14e+0
$2p \cdot d(^{3}D_{3}^{o}) - 2p \cdot p(^{3}S_{2}^{o})$	2416.25	*	3.94e+2	7.64e+1	4.24e+1	1.26e+1	7.26e+0	5 32e+0	4 87e+0
$2p \operatorname{rd}(^{3}D^{0}) - 2p \operatorname{sp}(^{3}P^{e})$	2520.21	*	4.15e+2	6 16e+1	3 38e+1	1.03e+1	5.95e+0	433e+0	3 70e+0
$2p4d(^{3}D^{0}) - 2p3p(^{3}S^{e})$	2320.21	*	2 87e+2	4.26e+1	2.34e+1	7.09e+0	4.12e+0	2.99e+0	2.56e+0
$2p \operatorname{Id}(B_1) = 2p \operatorname{Sp}(B_1)$ $2p \operatorname{Id}(^3 \operatorname{F}^{\circ}) = 2p \operatorname{Sp}(^3 \operatorname{D}^{\circ})$	2317.04	*	3.81e+2	9.86e+1	4.60e+1	7.09e+0	3 19e+0	2.990+0 2.04e+0	1.60e+0
$2p4d(^{3}F^{0}) = 2p3p(^{3}D^{2})$	2316.49	*	1.20e+3	1.3000+1	9.15e+1	7.000+0 2.69e+1	1.58e+1	1.19e+1	1.00C+0
$2p4d(^{3}F_{0}^{\circ}) - 2p3p(^{3}D_{0}^{e})$	2316.68	*	3.28e+2	5.98e+1	3.49e+1	1.19e+1	7.26e+0	5.60e+0	5.76e+0
4p - 3d									
$2p4p({}^{3}S_{1}^{2}) - 2p3d({}^{3}P_{2}^{2})$	6809.98	*	9.47e+1	2.28e+1	1.18e+1	2.98e+0	1.78e+0	1.36e+0	1.28e+0
$2p4p(^{3}D_{3}^{e}) - 2p3d(^{3}F_{4}^{e})$	6167.75	*	3.07e+2	7.09e+1	3.46e+1	6.84e+0	3.57e+0	2.52e+0	2.22e+0
$2p4p({}^{3}D_{2}^{e}) - 2p3d({}^{3}F_{3}^{e})$	6173.31	*	6.54e+2	9.52e+1	5.1'/e+1	1.63e+1	1.02e+1	7.96e+0	7.74e+0
$2p4p(^{-}D_{1}) - 2p3d(^{-}P_{2})$	01/0.10	*	2.44e+2	4.410+1	2.390+1	9.470+0	0.20e+0	5.07e+0	4.970+0
$4p^{3}D^{e} - 3s^{3}P^{o}$									
$2p4p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	1859.26	*	3.00e+2	6.93e+1	3.38e+1	6.68e+0	3.48e+0	2.47e+0	2.17e+0
$2p4p({}^{3}D_{2}^{e}) - 2p3s({}^{3}P_{1}^{\bar{o}})$	1857.87	*	4.43e+2	6.44e+1	3.50e+1	1.10e+1	6.87e+0	5.38e+0	5.24e+0
$2p4p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	1858.55	*	1.35e+2	2.44e+1	1.43e+1	5.24e+0	3.46e+0	2.80e+0	2.75e+0
$4n^{3}D^{e} - 4s^{3}P^{0}$									
$2n4n(^{3}D^{e}) - 2n4s(^{3}P^{0})$	16256 20	*	1.05e+2	2 42e+1	1 18e±1	2 34e+0	1 22e±0	8.63e-1	7.60e-1
-r·r(~3/ -r·s(*2/	10200.20	•	1.00012	2.12011		2.3 1010	1.22010	0.000 1	

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,
$4s^{3}P^{0} - 3p^{3}D^{e}$	2228 72		1.15 . 0	0.55 . 1	1.07 . 1	2.05 . 0	1.06 .0	1 47 .0	1.4
$2p4s(^{3}P_{2}^{3}) - 2p3p(^{3}D_{3}^{2})$	3328.72	*	1.15e+2	2.55e+1	1.2/e+1	3.05e+0	1.86e+0	1.4/e+0	1.4
$3d^{3}P^{0} - 3p^{1}P^{e}$	44.00 50							1	
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{4}P_{1}^{0})$	4109.59	*	4.16e+2	9.90e+1	4.37e+1	5.80e+0	2.50e+0	1.66e+0	1.4
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{4}P_{1}^{0})$	4114.33	*	1.51e+3	3.5/e+2	1.66e+2	2.80e+1	1.35e+1	9.19e+0	7.7
$2p3d(^{3}P_{2}^{0}) - 2p3p(^{4}P_{1}^{e})$	4123.12	*	3.04e+3	7.18e+2	3.53e+2	7.28e+1	3.76e+1	2.63e+1	2.3
$3d^{3}P^{o} - 3p^{3}P^{e}$ (V29)									
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}P_{1}^{e})$	5454.21	*	1.81e-4	4.32e-5	1.91e-5	2.53e-6	1.09e-6	7.25e-7	6.1
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{2}^{e})$	5480.05	*	1.51e+2	3.59e+1	1.67e+1	2.81e+0	1.35e+0	9.23e-1	7.7
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{1}^{e})$	5462.58	*	7.18e-1	1.70e-1	7.93e-2	1.34e-2	6.42e-3	4.39e-3	3.6
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{0}^{e})$	5452.07	*	1.03e+2	2.44e+1	1.13e+1	1.91e+0	9.18e-1	6.27e-1	5.2
$2p3d(^{3}P_{2}^{0}) - 2p3p(^{3}P_{2}^{e})$	5495.65	*	5.46e+2	1.29e+2	6.34e+1	1.31e+1	6.75e+0	4.72e+0	4.1
$2p3d(^{3}P_{2}^{\tilde{o}}) - 2p3p(^{3}P_{1}^{\tilde{e}})$	5478.09	*	4.18e-1	9.85e-2	4.85e-2	1.00e-2	5.17e-3	3.61e-3	3.1
$3d^{3}P^{o} - 3p^{3}S^{e}$									
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}S_{1}^{e})$	4987.38	*	1.42e+2	3.38e+1	1.50e+1	1.98e+0	8.54e-1	5.68e-1	4.8
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}S_{1}^{e})$	4994.37	*	1.53e+2	3.62e+1	1.69e+1	2.84e+0	1.37e+0	9.32e-1	7.8
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}S_{1}^{e})$	5007.33	*	1.40e+2	3.29e+1	1.62e+1	3.34e+0	1.73e+0	1.21e+0	1.0
$3d^{3}P^{o} - 3n^{3}D^{e}$									
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	4507.56	*	1.85e+2	4.36e+1	2.15e+1	4.42e+0	2.28e+0	1.60e+0	1.4
$3d^{3}D^{0} - 3n^{3}P^{e}$									
$2n3d(^{3}D^{0}) - 2n3n(^{3}P^{e})$	5941.65	*	5 09e+3	1.09e+3	5 65e+2	1 26e+2	6 33e+1	4 27e+1	35
$2p3d(^{3}D^{0}) - 2p3p(^{3}P^{e})$	5952 39	*	1.68e-2	3 55e_3	1.88e-3	4.45e-4	2 30e-4	1.58e-4	13
$2p3d(^{3}D^{0}) - 2p3p(^{3}P^{e})$	5031.78	*	0.03e+1	2.10 ± 1	1.000-5	2.640+0	1.360+0	0.376 - 1	7.9
$2p3d(^{3}D^{0}) - 2p3p(^{3}P^{e})$	5960.00	*	6.936 ± 1	1.270 ± 1	6.70e+0	2.040±0	8.83a-1	9.370 - 1	1.0
$2p3d(D_1) = 2p3p(T_2)$ $2p3d(^3D^0) = 2p3p(^3D^0)$	5040.24	т 	0.920 ± 0	6.220 1	3 220 1	8 240 2	4.320.2	0.09c - 1	
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}P_{0}^{e})$ $2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}P_{0}^{e})$	5927.81	*	1.69e+3	0.23e=1 3.11e+2	1.66e+2	4.11e+1	4.32e-2 2.16e+1	2.98e-2 1.49e+1	1.2
21 ³ D ⁰ 2- ³ D ^e (V20)									
$2n^2 d^{(3}D^{0}) = 2n^2 n^{(3}D^{0})$	1803 20		2.05012	6 220 1 2	2 280 1 2	7.200 ± 1	267011	2 180 1	20
$2p3d(D_3) - 2p3p(D_3)$	4003.29	*	2.930+3	0.330+2	3.260 ± 2	1.500+1	3.07e+1	2.400 ± 1	2.0
$2p3d(^{2}D_{3}^{2}) - 2p3p(^{2}D_{2}^{2})$	4781.19	*	1.000+2	4.05e+1	2.090+1	4.04e+0	2.550+0	1.000+0	1.3
$2p3d(^{\circ}D_{2}^{\circ}) - 2p3p(^{\circ}D_{3}^{\circ})$	4810.30	*	1.94e-3	4.11e-4	2.18e-4	5.166-5	2.666-5	1.836-5	1.2
$2p3d(^{3}D_{2}^{3}) - 2p3p(^{3}D_{2}^{2})$	4/88.14	*	1.65e-2	3.49e-3	1.85e-3	4.38e-4	2.26e-4	1.56e-4	1.3
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	4774.24	*	3.68e+0	7.78e-1	4.12e - 1	9.76e-2	5.04e-2	3.47e-2	2.9
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{2}^{e})$	4793.65	*	4.13e+2	7.60e+1	4.05e+1	1.01e+1	5.27e+0	3.63e+0	2.9
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{1}^{e})$	4779.72	*	1.33e+3	2.45e+2	1.31e+2	3.24e+1	1.70e+1	1.17e+1	9.5
$3d^{3}D^{o} - 3p^{3}S^{e}$									
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}S_{1}^{e})$	5390.69	*	1.58e+3	2.91e+2	1.55e+2	3.85e+1	2.02e+1	1.39e+1	1.1
$3d^{1}D^{o} - 3p^{3}P^{e}$									
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}P_{2}^{e})$	6086.54	*	9.17e+2	1.64e+2	8.56e+1	2.02e+1	1.04e+1	7.09e+0	5.8
$3d^{1}D^{0} - 3p^{3}S^{e}$									
$2p3d(^{1}D_{2}^{o}) - 2p3p(^{3}S_{1}^{e})$	5493.23	*	4.17e+3	7.48e+2	3.90e+2	9.17e+1	4.72e+1	3.23e+1	2.6
$3d^{1}D^{0} - 3p^{3}D^{e}$									
$2p3d(^{1}D_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	4897.54	*	3.54e+2	6.35e+1	3.31e+1	7.79e+0	4.01e+0	2.74e+0	2.2
$2p3d(^{1}D_{2}^{\tilde{o}}) - 2p3p(^{3}D_{2}^{\tilde{e}})$	4874.57	*	1.87e+3	3.34e+2	1.74e+2	4.10e+1	2.11e+1	1.44e+1	1.2
$2p3d(^{1}D_{2}^{\tilde{0}}) - 2p3p(^{3}D_{1}^{\tilde{e}})$	4860.17	*	2.37e+2	4.24e+1	2.21e+1	5.20e+0	2.68e+0	1.83e+0	1.5
$3d^{3}F^{o} - 3p^{3}D^{e}$ (V19)									
$2p3d(^{3}F_{4}^{0}) - 2p3p(^{3}D_{2}^{e})$	5005.15	*	5.94e+3	1.43e+3	6.44e+2	8.98e+1	3.81e+1	2.40e+1	1.9
$2p3d(^{3}F_{2}^{0}) - 2n3n(^{3}D_{1}^{e})$	5025.66	*	9.57e+2	1.72e+2	8.70e+1	2.01e+1	1.07e+1	7.69e+0	7.1
$2n3d(^{3}F_{0}^{o}) - 2n3n(^{3}D^{e})$	5001 47	*	9.43e+3	1.70e+3	8.57e+2	1.98e+2	1.06e+2	7.57e+1	7 (
$2n3d(^{3}F^{0}) - 2n3n(^{3}D^{e})$	5040 71	*	1.98e±1	4 02e+0	2.14e±0	5 56e-1	3.08e=1	2.26e-1	2.1
$2p3d(^{3}F^{0}) = 2p3p(^{3}D^{e})$	5016 38	*	8 55e±2	1.320+0 1.73e+2	9.2.1-0+0 9.22e+1	2.300-1 2.40e+1	1 33e±1	2.200−1 9.74e±0	0.7
$2p3d(^{3}F_{2}^{o}) - 2p3p(^{3}D_{1}^{e})$	5001.13	*	5.18e+3	1.05e+2	5.59e+2	1.45e+2	8.04e+1	5.90e+1	5.6
$\frac{1}{3n^{1}S^{e}-3e^{1}D^{0}}$									
2n3n(1Se) = 2n3e(1D0)	3/37 1/	*	1 10e±2	3 (Mo+1	1 71a±1	5 57e±0	3 700+0	3 200+0	22
$2\mu_{0}\mu_{0} = 2\mu_{0}\mu_{0}(r_{1})$	5457.14	ዯ	1.100+2	5.040+1	1./10+1	5.576+0	5.790+0	5.296+0	5.5

Table 3. Continued.

						<i>T</i> _e [K]			
Transition	λ[Å]		125	500	1000	5000	10,000	15,000	20,000
$3p^{1}D^{e} - 3s^{1}P^{o}$									
$2p3p({}^{1}D_{2}^{e}) - 2p3s({}^{1}P_{1}^{o})$	3995.00	*	5.56e+2	1.48e+2	8.44e+1	2.85e+1	2.05e+1	1.93e+1	2.08e+1
$3p^{1}D^{e} - 3s^{3}P^{o}$									
$2p3p(^{1}D_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	3955.85	*	9.34e+1	2.49e+1	1.42e+1	4.78e+0	3.45e+0	3.24e+0	3.49e+0
$3p^{3}P^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{1}P_{1}^{o})$	4654.53	*	1.68e+2	3.61e+1	1.87e+1	4.53e+0	2.53e+0	1.85e+0	1.63e+0
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{4}P_{1}^{e})$ $2p3p(^{3}P_{1}^{e}) - 2p3s(^{4}P_{1}^{e})$	4667.21 4674.91	*	3.31e+2 2 40e+2	8.50e+1 4.17e+1	4.91e+1 2 25e+1	1.68e+1 6 35e+0	1.24e+1 3.76e+0	1.20e+1 2 84e+0	1.31e+1 2 47e+0
	107 119 1		2110012		2120011	0.00010	5170010	2101010	2
$3p^{3}P^{e} - 3s^{3}P^{o}$ (V5) $2p_{3}n_{3}^{(3}P^{e}) - 2p_{3}n_{3}^{(3}P^{o})$	4630 54	4	4.02 ± 3	861a+2	1 160+2	1.08a+2	6 05e+1	4.42 + 1	3 88a+1
$2p3p(^{3}P_{2}^{o}) - 2p3s(^{3}P_{1}^{o})$ $2p3p(^{3}P_{2}^{o}) - 2p3s(^{3}P_{1}^{o})$	4601.48	*	1.13e+3	2.42e+2	1.26e+2	3.04e+1	1.70e+1	1.24e+1	1.09e+1
$2p3p(^{3}P_{1}^{2}) - 2p3s(^{3}P_{2}^{0})$	4643.09	*	1.56e-5	3.99e-6	2.31e-6	7.91e-7	5.82e-7	5.64e-7	6.17e-7
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	*	7.11e+1	1.82e+1	1.05e+1	3.61e+0	2.66e+0	2.58e+0	2.82e+0
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	4607.15	*	1.03e-1	2.65e-2	1.53e-2	5.25e-3	3.86e-3	3.74e-3	4.10e-3
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	*	1.50e+3	2.61e+2	1.41e+2	3.98e+1	2.35e+1	1.78e+1	1.54e+1
$3p^{3}P^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}P_{2}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1275.25	*	5.15e+2	1.10e+2	5.71e+1	1.38e+1	7.74e+0	5.66e+0	4.97e+0
$2p3p(^{3}P_{2}^{e}) - 2s2p^{3}(^{3}D_{3}^{0})$	1275.04	*	2.82e+3	6.04e+2	3.13e+2	7.59e+1	4.25e+1	3.10e+1	2.72e+1
$2p3p(^{3}P_{0}^{2}) - 2s2p^{3}(^{3}D_{1}^{3})$	1276.80	*	1.10e+3	1.92e+2	1.03e+2	2.92e+1	1.73e+1	1.30e+1	1.13e+1
$3p^{3}S^{e} - 3s^{1}P^{0}$									
$2p3p({}^{3}S_{1}^{e}) - 2p3s({}^{1}P_{1}^{o})$	5073.59	*	1.56e+2	2.96e+1	1.57e+1	4.13e+0	2.38e+0	1.78e+0	1.58e+0
$3p^3S^e - 3s^3P^o$									
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5045.10	*	1.91e+3	3.62e+2	1.91e+2	5.04e+1	2.91e+1	2.18e+1	1.93e+1
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{1}^{e})$ $2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{1}^{e})$	5010.62	*	8.80e+2	1.67e+2	8.82e+1	2.32e+1	1.34e+1	1.00e+1	8.91e+0
$2psp(*S_1) - 2pss(*P_0)$	5002.70	*	1.390+3	2.050+2	1.596+2	5.070+1	2.120+1	1.580+1	1.41e+1
$3p^{3}S^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}S_{1}^{e}) - 2s2p^{3}(^{3}D_{1}^{o})$	1304.79	*	8.31e+2	1.57e+2	8.32e+1	2.19e+1	1.27e+1	9.46e+0	8.41e+0
$2p3p({}^{3}S_{1}^{c}) - 2s2p^{3}({}^{3}D_{2}^{b})$	1304.77	*	2.46e+3	4.65e+2	2.46e+2	6.48e+1	3./4e+1	2.80e+1	2.49e+1
$3p^{3}D^{e} - 3s^{3}P^{o}$ (V3)									
$2p3p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{e})$	5679.56	*	7.7/e+3	1.77e+3	8.42e+2	1.49e+2	7.35e+1	5.2/e+1	4.68e+1
$2p_{2}p_{2}(^{2}D_{2}^{e}) - 2p_{3}(^{2}P_{2}^{e})$ $2p_{3}p_{3}(^{3}D_{2}^{e}) - 2p_{3}(^{3}P_{2}^{e})$	5/10.//	*	2.030+3 7 20e+3	4.52e+2 1 25e+3	2.34e+2 6 $47e+2$	5.9/e+1 1.65e+2	3.380 ± 1	2.54e+1 7.03e+1	2.41e+1 6.67e+1
$2p3p(^{3}D_{2}) = 2p3s(^{3}T_{1})$ $2p3p(^{3}D_{2}) = 2p3s(^{3}P_{2})$	5730.66	*	1.36e+2	2.68e+1	1.46e+1	4.13e+0	2.42e+0	1.85e+0	1.77e+0
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	5686.21	*	1.79e+3	3.53e+2	1.92e+2	5.43e+1	3.19e+1	2.43e+1	2.33e+1
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{0}^{e})$	5676.02	*	3.01e+3	5.93e+2	3.23e+2	9.13e+1	5.35e+1	4.09e+1	3.92e+1
$3n^{3}D^{e}$ $2c2n^{3}^{3}D^{0}$									
$2p_{3}p_{1}^{(3)}D_{e}^{e} = 2s_{2}p_{1}^{(3)}T_{e}^{(3)}$	1740.31	*	3.24e+3	7.37e+2	3.51e+2	6.23e+1	3.06e+1	2.20e+1	1.95e+1
$2p3p(^{3}D_{e}^{2}) - 2s2p^{3}(^{3}P_{e}^{0})$	1743.23	*	1.13e+3	1.94e+2	1.01e+2	2.57e+1	1.46e+1	1.09e+1	1.04e+1
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}P_{1}^{o})$	1743.20	*	3.49e+3	5.98e+2	3.10e+2	7.91e+1	4.48e+1	3.37e+1	3.19e+1
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}P_{0}^{o})$	1745.26	*	1.24e+3	2.44e+2	1.33e+2	3.76e+1	2.20e+1	1.68e+1	1.61e+1
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}P_{1}^{o})$	1745.05	*	9.12e+2	1.80e+2	9.79e+1	2.77e+1	1.62e+1	1.24e+1	1.19e+1
$3p^{3}D^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}D_{3}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1343.57	*	1.15e+2	2.62e+1	1.25e+1	2.22e+0	1.09e+0	7.81e-1	6.93e-1
$2p3p(^{3}D_{3}^{e}) - 2s2p^{3}(^{3}D_{3}^{o})$	1343.34	*	9.77e+2	2.22e+2	1.06e+2	1.88e+1	9.24e+0	6.62e+0	5.88e+0
$2p3p(^{3}D_{2}^{\circ}) - 2s2p^{3}(^{3}D_{1}^{0})$ $2r^{2}r(^{3}D_{2}^{\circ}) - 2r^{2}r(^{3}D_{2}^{\circ})$	1345.34	*	2.24e+2	3.85e+1	1.99e+1	5.09e+0	2.88e+0	2.16e+0	2.05e+0
$2p_{2}p_{3}p_{2}^{(3}D_{2}^{e}) - 2s_{2}2p_{3}^{(3}D_{2}^{e})$	1345.31	*	1.0/e+3	1.84e+2	9.52e+1	2.43e+1	1.58e+1	1.03e+1	9.80e+0
$2p_{2}p_{1}(D_{2}) - 2s_{2}p_{1}(D_{3})$ $2n_{3}n_{1}(^{3}D^{2}) - 2s_{2}n_{3}(^{3}D^{2})$	1345.08	*	2.70e+2 5 54e±2	4./00+1 1.00e±2	2.470+1 5.95e±1	0.510+0 1.68e±1	5.57e+0 9.87e±0	2.09e+0 7 54e±0	2.55e+0 7.23e±0
$2p_{3}p_{1}^{(3)} - 2s_{2}p_{1}^{(3)} - 2s_{2}p_{1}^{(3)}$	1346.41	*	2.04e+2	4.02e+1	2.19e+1	6.18e+0	3.63e+0	2.77e+0	2.66e+0
$\mathbf{r} = \mathbf{r} = \mathbf{r}$							2.50010		
$3p^{3}D^{e} - 3s^{4}P^{0}$	5717 20		1 17 2	2.00 2	1.04 2	2 (4- 1	1 50- 1	1 10- 1	1.071
$2p_{3}p_{1}^{(2)}D_{2}^{(2)} - 2p_{3}s_{1}^{(1)}P_{1}^{(2)}$	576745	*	1.1/e+3 3.70a+2	2.00e+2 7.47e+1	1.04e+2 4.07e±1	2.04e+1 1.15e±1	1.50e+1	1.12e+1 5.16e+0	1.0/e+1
$2h2h(n^{1}) - 7h2g(n^{1})$	5707.45	*	5.170+2	1.4/0+1	7.0/C+1	1.150+1	0.750+0	5.100+0	7.24070
$3p^{1}P^{e} - 3s^{1}P^{o}$									

_

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,000
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	6482.05	*	1.27e+2	2.64e+1	1.28e+1	2.61e+0	1.40e+0	1.04e+0	9.56e-
$3p^{1}P^{e} - 3s^{3}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	6435.61	*	1.16e+3	2.42e+2	1.17e+2	2.40e+1	1.29e+1	9.53e+0	8.78e+
$2p3p(^{1}P_{1}^{0}) - 2p3s(^{3}P_{1}^{0})$	6379.62	*	6.78e+2	1.41e+2	6.84e+1	1.40e+1	7.50e+0	5.56e+0	5.12e+
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	6366.79	*	2.87e+2	5.97e+1	2.89e+1	5.92e+0	3.17e+0	2.35e+0	2.17e+
$3p^{1}P^{e} - 2s2p^{3}{}^{3}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{0}^{o})$	1805.47	*	5.08e+2	1.06e+2	5.13e+1	1.05e+1	5.63e+0	4.17e+0	3.84e-
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{2}^{0})$	1805.28	*	2.48e+3	5.17e+2	2.50e+2	5.12e+1	2.75e+1	2.03e+1	1.87e-
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{1}^{o})$	1805.24	*	1.52e+3	3.16e+2	1.53e+2	3.13e+1	1.68e+1	1.24e+1	1.15e-
$2s2n^{3} {}^{3}P^{0} - 2n^{2} {}^{1}D^{e}$									
$2s2p^{3}(^{3}P_{0}^{o}) - 2p^{2}(^{1}D_{0}^{e})$	1064.95	*	7.66e+3	1.59e+3	7.76e+2	3.19e+2	2.94e+2	2.50e+2	2.20e-
$2s2p^{3}(^{3}P_{1}^{o}) - 2p^{2}(^{1}D_{2}^{e})$	1064.96	*	4.40e+3	8.12e+2	4.18e+2	1.63e+2	1.41e+2	1.20e+2	1.10e-
$2s2n^{3} {}^{3}P^{o} - 2n^{2} {}^{1}S^{e}$									
$2s2p^{3}(^{3}P_{1}^{o}) - 2P^{2}(^{1}S_{0}^{e})$	1306.71	*	1.89e+3	3.49e+2	1.80e+2	7.03e+1	6.05e+1	5.17e+1	4.73e-
$2s2p^{3}{}^{3}D^{o} - 2p^{2}{}^{1}S^{e}$									
$2s2p^{3}(^{3}D_{1}^{o}) - 2P^{2}(^{1}S_{0}^{e})$	1678.89	*	1.31e+3	2.42e+2	1.33e+2	1.18e+2	1.15e+2	9.79e+1	8.53e-
$2s^{2}n^{3}{}^{3}D^{0} - 2n^{2}{}^{1}D^{e}$									
$2s2p^{3}(^{3}D_{1}^{o}) - 2p^{2}(^{1}D_{2}^{e})$	1299.79	*	2.11e+3	3.89e+2	2.14e+2	1.90e+2	1.85e+2	1.57e+2	1.37e
$2s^2p^3(^3D_0^0) - 2p^2(^1D_0^0)$	1299.81	*	5.85e+3	1.08e+3	5.79e+2	4.52e+2	4.24e+2	3.57e+2	3.11e
$2s2p^{3}(^{3}D_{0}^{o}) - 2p^{2}(^{1}D_{0}^{o})$	1300.04	*	5.93e+3	1.17e+3	5.98e+2	4.29e+2	3.86e+2	3.16e+2	2.72e

Table 4. Same as Table 3 but for $N_{\rm e} = 10^3 \, {\rm cm}^{-3}$.

						$T_{\rm e}[{\rm K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,000
6h - 5a									
$2p6h I[13/2]^{e} - 2p5g H[11/2]^{e}$	18622.57		1.60e+3	3.30e+2	1.47e+2	1.95e+1	7.54e+0	4.27e+0	2.78e+0
$2p6h H[11/2]_{6}^{e} - 2p5g G[9/2]_{6}^{e}$	18481.01		1.59e+3	3.23e+2	1.44e+2	1.91e+1	7.41e+0	4.21e+0	2.75e+0
$2p6h H[11/2]_{e}^{2} - 2p5g G[9/2]_{e}^{2}$	17964.67		1.32e+3	2.69e+2	1.19e+2	1.59e+1	6.16e+0	3.50e+0	2.28e+0
$2p6h H[9/2]^{e}_{e} - 2p5g G[7/2]^{o}_{e}$	18480.67		1.29e+3	2.63e+2	1.17e+2	1.56e+1	6.04e+0	3.43e+0	2.23e+0
$2p6h G[9/2]^{e}_{e} - 2p5g F[7/2]^{o}_{o}$	18549.42		1.03e+3	2.10e+2	9.32e+1	1.24e+1	4.80e+0	2.73e+0	1.78e+0
$2p6h G[7/2]^{e}_{e} - 2p5g F[5/2]^{o}_{o}$	18679.36		1.03e+3	2.12e+2	9.46e+1	1.26e+1	4.85e+0	2.74e+0	1.78e+0
$2p6h I[13/2]_{e}^{e} - 2p5g H[11/2]_{e}^{o}$	18622.64		1.87e+3	3.85e+2	1.72e+2	2.28e+1	8.81e+0	4.99e+0	3.25e+0
$2p6h H[9/2]_{e}^{e} - 2p5g G[7/2]_{o}^{o}$	18533.26		1.44e + 3	2.53e+2	1.22e+2	2.30e+1	1.04e+1	6.38e+0	4.41e+0
$2p6h I[11/2]^{e} - 2p5g H[9/2]^{e}$	18546.53		2.19e+3	3.85e+2	1.85e+2	3.49e+1	1.58e+1	9.69e+0	6.71e+0
$2p6h I[11/2]_{5}^{e} - 2p5g H[9/2]_{4}^{o}$	19170.43		1.82e+3	3.20e+2	1.54e+2	2.90e+1	1.31e+1	8.05e+0	5.57e+0
$2p6h H[9/2]_5^6 - 2p5g G[7/2]_4^6$	18533.26		1.81e+3	3.19e+2	1.53e+2	2.89e+1	1.30e+1	8.02e+0	5.55e+0
6g – 5f									
$2p6g G[9/2]_4^o - 2p5f F[7/2]_3^e$	17930.73		2.77e+2	5.84e+1	3.19e+1	8.50e+0	4.41e+0	2.92e+0	2.15e+0
$2p6g G[9/2]_5^{o} - 2p5f F[7/2]_4^{e}$	18277.37		3.45e+2	7.26e+1	3.96e+1	1.06e+1	5.48e+0	3.62e+0	2.67e+0
$2p6g F[7/2]_3^{\circ} - 2p5f D[5/2]_2^{\circ}$	18230.35		2.03e+2	4.27e+1	2.33e+1	6.23e+0	3.23e+0	2.13e+0	1.56e+0
$2p6g F[7/2]_4^{\overline{0}} - 2p5f D[5/2]_3^{\overline{e}}$	18222.01		2.67e+2	5.62e+1	3.07e+1	8.19e+0	4.24e+0	2.81e+0	2.08e+0
6g – 4f	6412.22		0.56	5 4 4 1	2.07 1	7.00	4.11 0	0.70 û	0.00
$2 \text{pog} G[9/2]_4^6 - 2 \text{p4f} F[7/2]_3^6$	6413.23		2.58e+2	5.44e+1	2.9/e+1	7.92e+0	4.11e+0	2./2e+0	2.00e+0
$2pog G[9/2]_5^e - 2p4f G[7/2]_4^e$	6556.32		1.58e+2	3.33e+1	1.82e+1	4.85e+0	2.52e+0	1.66e+0	1.22e+0
$2pog G[9/2]_{5}^{\circ} - 2p4f F[7/2]_{4}^{\circ}$	6456.97		3.31e+2	6.95e+1	3.80e+1	1.01e+1	5.25e+0	3.47e+0	2.56e+0
$2p6g F[7/2]_3^0 - 2p4f D[5/2]_2^e$	6446.53		2.27e+2	4.76e+1	2.60e+1	6.94e+0	3.60e+0	2.38e+0	1.74e+(
$2p6g F[7/2]_4^o - 2p4f D[5/2]_3^e$	6445.34		3.00e+2	6.31e+1	3.45e+1	9.19e+0	4.77e+0	3.15e+0	2.33e+0
6f - 3d	2504 10		1.00-+2	2.96-1	1 50 - 1	516-0	2.04-+0	2 10-+0	1 77 (
$2poi F[7/2]_4^2 - 2poi(^2F_3)$	2504.19	*	1.996+2	2.800+1	1.360+1	5.100+0	3.040+0	2.190+0	1.778+0
$2poi F[7/2]_{3}^{2} - 2p3d(^{3}F_{2}^{2})$	2500.67	*	2.30e+2	3.26e+1	1.80e+1	5.91e+0	3.49e+0	2.52e+0	2.05e+0
$2p6f F[5/2]_2^2 - 2p3d(^3D_1^3)$	2560.24	*	1.53e+2	2.19e+1	1.21e+1	3.92e+0	2.31e+0	1.65e+0	1.31e+0
$2p6f F[5/2]_3^c - 2p3d(^3D_2^o)$	2561.95	*	1.41e+2	2.00e+1	1.10e+1	3.59e+0	2.12e+0	1.53e+0	1.26e+0
6d - 3p $2p6d(^{3}F_{3}^{o}) - 2p3p(^{3}D_{2}^{e})$	1680.27		1.17e+2	1.87e+1	1.10e+1	4.30e+0	2.89e+0	2.45e+0	3.15e+0
5g – 4f									
$2p5g F[5/2]_2^\circ - 2p4f D[3/2]_2^\circ$	10108.45	*	1.17e+3	2.53e+2	1.17e+2	1.71e+1	6.89e+0	3.98e+0	2.63e+0
$2p5g H[11/2]^{\circ}_{c} - 2p4f G[9/2]^{e}_{c}$	10023.27	*	2.58e+3	5.55e+2	2.56e+2	3.75e+1	1.51e+1	8.71e+0	5.73e+0
$2p5g H[11/2]_{c}^{6} - 2p4f G[9/2]_{c}^{6}$	10035.44	*	2.08e+3	4.49e+2	2.08e+2	3.04e+1	1.22e+1	7.07e+0	4.67e+0
$2p5gG[9/2]_{4}^{0} - 2p4fG[7/2]_{2}^{0}$	9941.81	*	5.88e+2	1.09e+2	5.42e+1	1.16e+1	5.53e+0	3.51e+0	2.49e+0
$2p5g G[9/2]_{0}^{4} - 2p4f F[7/2]_{0}^{2}$	9718.59	*	1.82e + 3	3.37e+2	1.68e + 2	3.59e+1	1.72e+1	1.09e+1	7.73e+0
$2p5gG[7/2]_{2}^{4} - 2p4fF[5/2]_{2}^{2}$	10070.12	*	9.98e+2	2.13e+2	9.84e+1	1.45e+1	5.85e+0	3.39e+0	2.25e+0
$2p5g H[9/2]_{e}^{3} - 2p4f G[7/2]_{e}^{2}$	9969.33	*	1.51e+3	3.23e+2	1.49e+2	2.19e+1	8.84e+0	5.12e+0	3.39e+0
$2p5gG[7/2]_4^9 - 2p4fF[5/2]_2^9$	10085.72	*	1.36e+3	2.90e+2	1.34e+2	1.96e+1	7.95e+0	4.61e+0	3.05e+0
$2p5gG[9/2]^{4}_{e} - 2p4fG[7/2]^{4}_{e}$	10126.15	*	7.51e+2	1.39e+2	6.93e+1	1.48e+1	7.07e+0	4.49e+0	3.18e+0
$2p5gG[9/2]_{c}^{9} - 2p4fF[7/2]_{c}^{4}$	9891.10	*	2.31e+3	4.26e+2	2.13e+2	4.54e+1	2.17e+1	1.38e+1	9.78e+0
$2p5g H[9/2]_{4}^{0} - 2p4f G[7/2]_{2}^{e}$	10118.53	*	1.24e+3	2.65e+2	1.22e+2	1.79e+1	7.26e+0	4.21e+0	2.79e+0
$2p5g F[7/2]_{2}^{2} - 2p4f D[5/2]_{2}^{3}$	9868.20	*	1.54e+3	2.84e+2	1.42e+2	3.03e+1	1.45e+1	9.18e+0	6.51e+0
$2p5g F[7/2]_{4}^{5} - 2p4f F[5/2]_{2}^{6}$	10250.19	*	3.36e+2	6.20e+1	3.10e+1	6.61e+0	3.16e+0	2.00e+0	1.42e+(
$2p5g F[7/2]_4^0 - 2p4f D[5/2]_3^0$	9865.42	*	2.04e+3	3.76e+2	1.88e+2	4.01e+1	1.92e+1	1.22e+1	8.64e+0
5f - 4d									
$2p5f F[7/2]_4^e - 2p4d(^3D_3^o)$	9281.06	*	2.54e+2	4.18e+1	2.29e+1	6.79e+0	3.80e+0	2.66e+0	2.10e+0
$2p5f F[7/2]_3^{e} - 2p4d({}^3F_2^{o})$	8772.93	*	1.87e+2	3.05e+1	1.67e+1	4.96e+0	2.79e+0	1.95e+0	1.55e+0
$2p5f F[5/2]_{2}^{e} - 2p4d(^{3}D_{1}^{o})$	9242.02	*	2.02e+2	3.30e+1	1.81e+1	5.35e+0	3.00e+0	2.09e+0	1.64e+0
$2p5f F[5/2]_3^{\tilde{e}} - 2p4d(^1D_2^0)$	8983.28	*	1.92e+2	3.13e+1	1.71e+1	5.07e+0	2.84e+0	1.99e+0	1.59e+0
5f - 3d									
$2p5fG[9/2]_5^e - 2p3d({}^3F_4^o)$	2885.27	*	5.03e+2	1.33e+2	7.08e+1	1.52e+1	7.22e+0	4.61e+0	3.41e+(
$2p5f D[5/2]_3^e - 2p3d(^3P_2^o)$	3082.20	*	2.43e+2	6.11e+1	3.26e+1	7.57e+0	3.80e+0	2.49e+0	1.84e+0
$2p5fG[7/2]_4^{e} - 2p3d({}^3F_3^{o})$	2884.25	*	1.71e+2	4.28e+1	2.29e+1	5.33e+0	2.68e+0	1.77e+0	1.38e+0
$2p5fG[7/2]_{2}^{e} - 2p3d({}^{3}F_{2}^{o})$	2879.75	*	1.77e+2	4.43e+1	2.36e+1	5.49e+0	2.76e+0	1.83e+0	1.42e+(
$2p5f F[7/2]_{4}^{2} - 2p3d(^{3}D_{2}^{6})$	2976.97	*	5.26e+2	8.65e+1	4.74e+1	1.41e+1	7.87e+0	5.50e+0	4.35e+(
$2p5fG[7/2]^{e} - 2n3d(^{3}F_{0}^{o})$	2897.50	*	3.23e+2	5.31e+1	2.91e+1	8.62e+0	4.83e+0	3.37e+0	2.67e+0
$2n5f F[7/2]_{e}^{e} - 2n3d(^{1}D^{0})$	2942 23	*	2.42e+2	3.95e+1	2.16e+1	6.42e+0	3.61e+0	2.52e+0	2.01e+f
$2n5fG[7/2]^{e} = 2n3d(^{3}F^{0})$	2892.87	*	3 87012	6.23e±1	3.41e±1	1 01e±1	5.69e±0	3 98e±0	3 160-1
$2n5f F[5/2]^{e} = 2n3d/^{3}D^{0}$	2072.07	*	3 800+2	6 360+1	3.10 ± 1	1 030+1	5 78010	4 03010	3 174+0
$2p_{211}[0/2]_{2} = 2p_{30}(D_{1})$	2713.00	T	5.67672	0.50071	5.77671	1.03671	5.70070	0JCTU	5.17640

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							$T_{\rm e}[{\rm K}]$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,000
	$\begin{array}{l} 2p5f F[5/2]_3^{\rm e} - 2p3d(^3{\rm D}_2^{\rm o}) \\ 2p5f F[5/2]_3^{\rm e} - 2p3d(^1{\rm D}_2^{\rm o}) \end{array}$	2975.95 2943.51	*	3.63e+2 2.43e+2	5.92e+1 3.96e+1	3.24e+1 2.17e+1	9.59e+0 6.42e+0	5.37e+0 3.59e+0	3.76e+0 2.51e+0	3.01e+0 2.02e+0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} 5d-3p\\ 2p5d(^{3}F_{3}^{o})-2p3p(^{3}D_{2}^{e}) \end{array}$	1858.42		3.26e+2	4.87e+1	2.80e+1	1.03e+1	6.69e+0	5.52e+0	6.78e+0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 4f - 3d {}^{1}P^{o} \\ 2p4f D[5/2]_{2}^{e} - 2p3d({}^{1}P_{1}^{o}) \end{array}$	4694.64	*	6.75e+2	1.47e+2	7.18e+1	1.34e+1	6.18e+0	3.88e+0	2.76e+0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$4f - 3d^{3}P^{0}$ 2p4f $D[5/2]_{0}^{2} - 2p3d(^{3}P_{1}^{0})$	4442.01	*	5.65e+2	1.23e+2	6.00e+1	1.12e+1	5.17e+0	3.25e+0	2.30e+0
	$2p4f D[5/2]_3^2 - 2p3d(^3P_2^0)$	4432.74	*	2.00e+3	4.36e+2	2.13e+2	3.97e+1	1.84e+1	1.16e+1	8.27e+0
$ 2 \mu F D[5/2]_{1}^{2} - 2p3d(^{1}P)_{2} + 4/p(e^{-1})_{1} + 4/p(e^{-1})_{1} + 1/2 + 2/p(e^{-1})_{1} + 4/p(e^{-1})_{1} $	$4f - 3d^3D^o$									
$ \begin{array}{c} 2pif (P_1/2)_{2} = 2p3d(^{1} D_{2}^{1}) \\ 4d08.09 \\ 2d02e+2 \\ 3d3e+2 \\ 2pif (P_1/2)_{2} = 2p3d(^{1} D_{2}^{1}) \\ 4d08.09 \\ 2d02e+2 \\ 3d3e+1 \\ 1.85e+1 \\ 4.28e+0 \\ 2d16e+1 \\ 1.92e+1 \\ 1.92$	$2p4f D[5/2]_{3}^{a} - 2p3d(^{3}D_{3}^{o})$	4179.67	*	4.71e+2	1.03e+2	5.01e+1	9.35e+0	4.32e+0	2.72e+0	1.95e+0
$ \begin{array}{c} 2\mu_{1}\mu_{1}\mu_{1}\mu_{2} = 2\mu_{3}\mu_{1}\mu_{2}\mu_{3} \\ 2\mu_{1}\mu_{1}\mu_{1}\mu_{2} = 2\mu_{3}\mu_{1}\mu_{2}\mu_{3} \\ 2\mu_{1}\mu_{1}\mu_{2}\mu_{2} = 2\mu_{3}\mu_{1}\mu_{2}\mu_{3} \\ 2\mu_{1}\mu_{1}\mu_{2}\mu_{2}\mu_{3}\mu_{2}\mu_{3}\mu_{4}\mu_{3}\mu_{4}\mu_{4}\mu_{4}\mu_{4}\mu_{4}\mu_{4}\mu_{4}\mu_{4$	$2p4f F[7/2]_4^2 - 2p3d(^3D_3^2)$	4199.98	*	4.08e+2	8./le+l	4.30e+1	8.49e+0	4.03e+0	2.60e+0	1.98e+0
$ \begin{array}{c} 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} = 2\mu_{3} \mu_{1} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{2} \mu_{2} = 2\mu_{3} \mu_{1} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} = 2\mu_{3} \mu_{1} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} = 2\mu_{3} \mu_{1} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} = 2\mu_{3} \mu_{1} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{3} \\ 2\mu_{1} \mu_{1} \mu_{1} \mu_{2} \mu_{2} \mu_{3} $	$2p41 F[7/2]_3 - 2p3d(^3D_2)$	4195.97	*	2.190+2	4.0/e+1	2.300 ± 1	4.340+0	2.100 ± 0	1.390+0	1.000+0 1.780+1
$ \begin{array}{c} 2\mu F(1)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 423.05 \\ 2\mu F(7)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4530.41 \\ 2\mu F(7)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4530.41 \\ 4\mu F(5)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4608.09 \\ 4\mu F(5)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4002.87 \\ 4\mu F(5)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4002.78 \\ 4\mu F(7)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4002.78 \\ 4\mu F(7)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4002.78 \\ 4\mu F(7)/21_{2}^{-1} - 2\mu 3d^{2}D_{2}^{-1} & 4002.$	$2p41 F[7/2]_4 - 2p3d(D_3)$ $2p4f F[7/2]^e - 2p3d(^3D^e)$	4241.79	*	3.310+3 1 75e+2	0.390 ± 2 3 17e ± 1	3.230 ± 2	7.230 ± 1 3.61e±0	5.010+1 1.80e±0	2.370 ± 1 1 18e ± 0	1./00+1 8.01e=1
$ \begin{array}{c} 2\mu \mu F[5/2]_{2} - 2p3d(^{2}D_{2}) & 4236.93 & 2.01e+3 & 3.62e+2 & 1.84e+2 & 4.28e+1 & 2.16e+1 & 1.43e+1 & 1.08e+1 \\ 2\mu \mu F[5/2]_{2}^{2} - 2p3d(^{2}D_{2}) & 4241.76 & 1.93e+3 & 3.48e+2 & 1.77e+2 & 4.10e+1 & 2.06e+1 & 1.36e+1 & 1.04e+1 \\ 4f - 3d^{1}P^{5} & 4241.76 & 1.93e+3 & 3.48e+2 & 1.77e+2 & 4.10e+1 & 2.06e+1 & 1.36e+1 & 1.04e+1 \\ 4f - 3d^{1}P^{5} & 4241.76 & 1.95e+3 & 4.43e+2 & 2.13e+2 & 3.55e+1 & 1.53e+1 & 9.29e+0 & 6.74e+1 \\ 2\mu \mu F[5/2]_{2}^{2} - 2p3d(^{1}P_{2}) & 4552.52 & 9.21e+2 & 1.97e+2 & 9.69e+1 & 1.92e+1 & 9.10e+0 & 5.88e+0 & 4.47e+1 \\ 2\mu \mu F[5/2]_{2}^{2} - 2p3d(^{1}P_{2}) & 4608.09 & 2.02e+2 & 3.63e+1 & 1.85e+1 & 4.28e+0 & 2.15e+0 & 1.42e+0 & 1.08e+1 \\ 4f - 3d^{3}P^{5} & 2p4\mu D[3/2]_{2}^{2} - 2p3d(^{1}P_{2}) & 4002.87 & 8 & 32e-1 & 4.00e-1 & 6.62e-2 & 2.44e-2 & 1.70e-2 & 1.16e-1 \\ 2\mu \mu D[3/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4002.87 & 8 & 3.67e+0 & 8.32e-1 & 4.00e-1 & 6.62e-2 & 2.84e-2 & 1.70e-2 & 1.16e-1 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4002.87 & 8 & 3.67e+0 & 8.32e-1 & 4.00e-1 & 6.62e-2 & 2.84e-2 & 1.10e-1 & 1.9e-1 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4013.35 & 7 & 7.30e+1 & 1.59e+1 & 7.76e-1 & 1.45e-1 & 6.68e-3 & 4.19e-3 & 2.98e-1 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4014.35 & 8 & 7.30e+1 & 1.59e+1 & 7.76e-2 & 1.45e-2 & 6.68e-3 & 4.19e-3 & 2.98e-1 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4024.71 & 8 & 430e-1 & 9.38e-2 & 4.58e-3 & 3.58e-3 & 2.48e-3 & 1.78e-1 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4024.71 & 8 & 3.0e+2 & 2.94e+3 & 1.44e-3 & 2.68e+1 & 1.20e+1 & 7.9e-5 & 5.57e-2 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4025.08 & 8 & 9.15e+2 & 2.07e+2 & 9.97e+1 & 1.66e+1 & 7.15e+0 & 4.35e+0 & 3.6e+1 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4025.08 & 8 & 9.15e+2 & 2.07e+2 & 4.58e+1 & 3.76e+1 & 4.56e+1 & 4.26e+1 & 1.56e+1 & 1.74e+1 & 1.24e+2 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 404.35 & 8 & 1.52e+2 & 3.38e+1 & 0.7e+0 & 3.8e+0 & 1.66e+1 & 3.7e+0 & 2.04e+0 & 1.55e+1 \\ 2\mu \mu D[5/2]_{2}^{2} - 2p3d(^{2}P_{2}) & 4025.08 & 8 & 1.94e+2 & 3.8e+1 & 3.7e+1 & 1.66e+1 & 1.74e+1 & 1.24$	$2pHF[7/2]_3 = 2pSd(D_3)$ $2p4fF[7/2]_2 = 2p3d(^3D_2)$	4237.05	*	8.35e+2	1.52e+2	7.67e+1	1 72e+1	8.58e+0	5.65e+0	4.26e+0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[5/2]_{3}^{\circ} - 2p3d(^{3}D_{2}^{\circ})$	4236.93	*	2.01e+3	3.62e+2	1.84e+2	4.28e+1	2.16e+1	1.43e+1	1.08e+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[5/2]_{3}^{e} - 2p3d(^{3}D_{2}^{o})$	4241.76	*	1.93e+3	3.48e+2	1.77e+2	4.10e+1	2.06e+1	1.36e+1	1.04e+1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$4f-3d^1F^o$									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4fG[9/2]_4^e - 2p3d(^1F_3^o)$	4530.41	*	1.95e+3	4.43e+2	2.13e+2	3.55e+1	1.53e+1	9.29e+0	6.74e+0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4fG[7/2]_4^e - 2p3d({}^1F_3^o)$	4552.52	*	9.21e+2	1.97e+2	9.69e+1	1.92e+1	9.10e+0	5.88e+0	4.47e+0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4f F[5/2]_3^e - 2p3d({}^1F_3^e)$	4608.09	*	2.02e+2	3.63e+1	1.85e+1	4.28e+0	2.15e+0	1.42e+0	1.08e+0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f - 3d^{3}F^{0}$	4011 82		2.77 + 0	6 20 2 1	2.022 1	5.01 2	214_{2}	1.20 - 2	9722 2
$ \begin{array}{c} 2\mu r D(2)/21_{2}^{-} - 2\mu S(1^{-})_{2}^{-} & 4002.87 \\ + 3.56^{-} + 0.532e^{-} & 4.00e^{-} & 6.52e^{-} & 2.84e^{-} \\ 2.84e^{-} & 1.70e^{-} & 1.9e^{-} & 2.98e^{-} \\ 2p4f D(5/2)_{2}^{-} - 2p3d(^{3}F_{2}^{+}) \\ 4012.87 \\ + 3.56^{-} + 0.532e^{-} & 1.76e^{-} & 1.45e^{-} & 6.68e^{-} & 4.19e^{-} & 2.98e^{-} \\ 2p4f D(5/2)_{2}^{-} - 2p3d(^{3}F_{2}^{+}) \\ 4013.79e^{-} & 1.74e^{+} & 3.79e^{+} & 1.85e^{+} & 3.46e^{-} & 1.60e^{-} & 1.00e^{-} \\ 1.00e^{-} & 1.68e^{-} & 3.46e^{-} & 1.00e^{-} & 1.00e^{-} \\ 1.00e^{-} & 1.00e^{-} & 1.68e^{-} & 1.00e^{-} & 1.00e^{-} \\ 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{-} \\ 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{-} \\ 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{-} \\ 1.00e^{-} & 1.00e^{-} & 1.00e^{-} & 1.00e^{$	$2p41 D[3/2]_2 - 2p3d(F_3)$ $2p4f D[3/2]^e - 2p3d(^3F^0)$	4011.82	*	2.770+0 1 30e-1	0.30e - 1	5.05e - 1 1 42e - 2	2.01e-2	2.14e - 2 1.01e - 3	1.29e-2	6.730-3
$ \begin{array}{c} 470 \ [5]{21} = 2p3d(^{2}F_{2}^{3}) & 4023.95 & $*$.7.30e+0 & 5.32e+1 & 4.50e+1 & 6.58e+2 & 4.19e+2 & 2.98e-2p4f \ [5]{21}_{22}^{2} = 2p3d(^{2}F_{2}^{3}) & 4014.35 & $*$.7.30e+0 & 1.59e+0 & 7.76e+1 & 1.45e+2 & 6.68e+3 & 4.19e+3 & 2.98e-2p4f \ [5]{21}_{22}^{2} = 2p3d(^{2}F_{2}^{3}) & 4017.96 & $*$ 1.74e+1 & 3.79e+0 & 1.85e+0 & 3.46e+1 & 1.60e+1 & 1.00e+1 & 7.19e-2 \\ p4f \ [5]{21}_{22}^{2} = 2p3d(^{2}F_{2}^{3}) & 4017.16 & $*$.7.30e+0 & 1.85e+0 & 3.46e+1 & 1.60e+1 & 1.00e+1 & 7.19e-2 \\ p4f \ [6]{21}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4015.11 & $*$ 1.35e+2 & 2.94e+3 & 1.44e+3 & 2.68e+4 & 1.24e+4 & 7.79e+5 & 5.57e-2 \\ p4f \ [6]{21}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4003.93 & $*$.5.72e+1 & 1.30e+1 & 6.24e+10 & 1.04e+0 & 4.47e+1 & 2.72e+1 & 1.97e-2 \\ p4f \ [6]{21}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4004.131 & $*$.3.67e+3 & 8.32e+2 & 4.00e+2 & 6.65e+1 & 2.86e+1 & 1.74e+1 & 1.24e+2 \\ p4f \ [6]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4004.53 & $*$.1.82e+3 & 3.89e+2 & 1.92e+2 & 3.79e+1 & 1.80e+1 & 1.56e+1 \\ p4f \ [6]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4004.53 & $*$.1.82e+3 & 3.89e+2 & 1.92e+2 & 3.79e+1 & 1.80e+1 & 1.16e+1 & 8.84e+2 \\ p4f \ [6]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4004.78 & $*$.2.92e+2 & 6.24e+1 & 3.08e+1 & 6.07e+0 & 2.88e+0 & 1.86e+0 & 1.42e+2 \\ p4f \ [6]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4003.508 & $*$.1.94e+3 & 4.14e+2 & 2.04e+2 & 4.03e+1 & 1.91e+1 & 1.24e+1 & 9.40e+2 \\ p4f \ [6]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4003.508 & $*$.1.94e+3 & 4.14e+2 & 2.04e+2 & 4.03e+1 & 1.80e+1 & 1.86e+0 & 1.32e+2 \\ p4f \ [6]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4003.508 & $*$.1.94e+3 & 4.14e+2 & 2.04e+2 & 4.03e+1 & 1.91e+1 & 1.24e+1 & 9.40e+2 \\ p4f \ [7]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4005.57 & $*$.7.1e+2 & 1.40e+2 & 7.08e+1 & 1.58e+0 & 3.7e+0 & 0.8e+0 & 3.38e+2 \\ p4f \ \ [7]{71}_{21}^{2} = 2p3d(^{2}F_{2}^{3}) & 4005.57 & $*$.7.1e+2 & 1.40e+2 & 7.08e+1 & 1.59e+1 & 7.39e+0 & 5.21e+0 & 3.32e+2 \\ p4f \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$2p41 D[3/2]_2 - 2p3d(\Gamma_2)$ $2p4f D[3/2]^e - 2p3d(^3F^0)$	4002.28	*	1.50e - 1 3.67e+0	2.930-2 8.32e-1	1.42e - 2 1.00e - 1	2.33e-3	2.84e-2	0.02e - 4 1 70e - 2	4.096-4
$\begin{array}{c} 1 \\ 2pti D[5/2]_{5}^{2} - 2p3d(^{2}F_{2}^{3}) & 104.35 & * 7.30e-1 \\ 1.76e-1 \\ 1.76e-2 \\ 1.45e-2 \\ $	$2p41D[5/2]_1 = 2p3d(1_2)$ $2p4fD[5/2]^e = 2p3d(^3F^o)$	4023.95	*	7 30e+0	1.52e - 1	7.75e-1	1.45e - 1	2.04C-2 6.68e-2	4.19e-2	2.98e-2
$ \begin{array}{c} 1.12 + 1.2 + 1.12 + 1.$	$2pHD[5/2]_2 = 2p3d(T_3)$ $2p4fD[5/2]_e^e = 2p3d(^3F_0^e)$	4014.35	*	7.30e-1	1.59e-1	7.76e-2	1.45e-2	6.68e-3	4.19e-3	2.98e-3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f D[5/2]_{2}^{2} - 2p3d(^{3}F_{1}^{0})$	4037.96	*	1.74e+1	3.79e+0	1.85e+0	3.46e-1	1.60e-1	1.00e-1	7.19e-2
$ 2p4f D[5/2]_{3}^{2} - 2p3d(^{3}F_{2}^{0}) = 4015.11 * 1.35e-2 2.94e-3 1.44e-3 2.68e-4 1.24e-4 7.79e-5 5.57e-2p4f G[9/2]_{4}^{2} - 2p3d(^{3}F_{2}^{0}) = 4025.08 * 9.15e+2 2.97e+2 9.97e+1 1.66e+1 7.15e+0 4.35e+0 3.16e+2p4f G[9/2]_{4}^{2} - 2p3d(^{3}F_{2}^{0}) = 4026.08 * 9.15e+2 2.07e+2 9.97e+1 1.66e+1 7.15e+0 4.35e+0 3.16e+2p4f G[9/2]_{4}^{2} - 2p3d(^{3}F_{2}^{0}) = 4026.08 * 9.15e+2 2.07e+2 9.97e+1 1.66e+1 7.15e+0 4.35e+0 3.16e+2p4f G[7/2]_{4}^{2} - 2p3d(^{3}F_{2}^{0}) = 4043.53 * 1.82e+3 8.32e+2 4.00e+2 6.65e+1 2.86e+1 1.74e+1 1.24e+2p4f G[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4043.53 * 1.82e+3 3.89e+2 1.92e+2 3.79e+1 1.80e+1 1.16e+1 8.84e+2p4f G[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4043.53 * 1.82e+3 3.89e+2 1.92e+2 3.79e+1 1.80e+1 1.16e+1 8.84e+2p4f G[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4035.08 * 1.94e+3 4.14e+2 2.04e+2 4.03e+1 1.91e+1 1.24e+1 9.40e+2p4f F[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4035.08 * 1.94e+3 4.14e+2 2.04e+2 4.03e+1 1.91e+1 1.24e+1 9.40e+2p4f F[7/2]_{4}^{2} - 2p3d(^{3}F_{2}^{0}) = 4095.90 * 2.69e+2 4.90e+1 2.48e+1 5.56e+0 2.77e+0 1.82e+0 1.36e+2p4f F[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4095.57 * 9.99e+0 1.82e+0 9.18e-1 2.06e-1 1.03e-1 6.76e-2 5.10e-2p4f F[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4096.57 * 9.99e+0 1.82e+0 5.34e-1 2.06e-1 1.03e-1 6.76e-2 5.10e-2p4f F[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4076.33 * 2.51e+1 4.51e+0 2.30e+0 5.34e-1 2.66e-1 1.36e-1 2.66e-1 2.01e-2p4f F[7/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4076.33 * 2.51e+1 4.51e+0 2.30e+0 5.34e-1 2.66e-1 1.78e-1 3.42e-2p4f F[5/2]_{2}^{2} - 2p3d(^{3}F_{2}^{0}) = 4076.33 * 2.51e+1 4.51e+0 2.30e+0 5.34e-1 2.66e-1 1.78e+0 3.93e+2p4f F[5/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4076.33 * 2.51e+1 4.51e+0 2.30e+0 5.34e-1 2.66e-1 1.78e+1 3.42e-2p4f F[5/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4076.33 * 2.51e+1 4.51e+0 2.30e+0 5.34e-1 2.66e-1 1.78e+1 3.42e-2p4f F[5/2]_{2}^{2} - 2p3d(^{3}F_{2}^{0}) = 4076.33 * 2.51e+1 4.51e+0 2.30e+0 5.34e-1 2.66e-1 1.78e+1 3.42e-2p4f F[5/2]_{5}^{2} - 2p3d(^{3}F_{2}^{0}) = 4076.33 * 2.51e+1 4.51e+0 2.30e+0 5.34e-1 $	$2p4f D[5/2]_{2}^{e} - 2p3d({}^{3}F_{2}^{e})$	4024.71	*	4.30e-1	9.38e-2	4.58e-2	8.55e-3	3.95e-3	2.48e-3	1.78e-3
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4f D[5/2]_{3}^{e} - 2p3d(^{3}F_{2}^{o})$	4015.11	*	1.35e-2	2.94e-3	1.44e-3	2.68e-4	1.24e-4	7.79e-5	5.57e-5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4fG[9/2]_4^{e} - 2p3d({}^3F_4^{o})$	4039.34	*	5.72e+1	1.30e+1	6.24e+0	1.04e+0	4.47e-1	2.72e-1	1.97e-1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4fG[9/2]_4^e - 2p3d({}^3F_3^o)$	4026.08	*	9.15e+2	2.07e+2	9.97e+1	1.66e+1	7.15e+0	4.35e+0	3.16e+0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4fG[9/2]_5^e - 2p3d({}^3F_4^6)$	4041.31	*	3.67e+3	8.32e+2	4.00e+2	6.65e+1	2.86e+1	1.74e+1	1.24e+1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4fG[7/2]_4^e - 2p3d({}^3F_4^o)$	4056.91	*	3.20e+2	6.83e+1	3.37e+1	6.66e+0	3.17e+0	2.04e+0	1.55e+0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4fG[7/2]_{4}^{e} - 2p3d({}^{3}F_{3}^{o})$	4043.53	*	1.82e+3	3.89e+2	1.92e+2	3.79e+1	1.80e+1	1.16e+1	8.84e+0
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$2p4fG[7/2]_{3}^{e} - 2p3d(^{3}F_{4}^{o})$	4058.16	*	8.07e+0	1.72e+0	8.49e-1	1.68e - 1	7.95e-2	5.14e-2	3.91e-2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$2p4fG[7/2]_{3}^{2} - 2p3d(^{3}F_{3}^{2})$	4044.78	*	2.92e+2	6.24e+1	3.08e+1	6.0/e+0	2.88e+0	1.86e+0	1.42e+0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4IG[7/2]_{3}^{2} - 2p3d(^{2}F_{2}^{2})$	4035.08	*	1.94e+3	4.14e+2 4.00a+1	2.04e+2	4.03e+1	1.910+1	1.24e+1 1.82a+0	9.40e+0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p41 F[7/2]_4 - 2p3d(F_4)$ $2p4f F[7/2]^e - 2p3d(^3F^e)$	4093.90	*	2.090+2	4.900 ± 1 1 22e+2	2.460 ± 1	1.38e+1	2.776 ± 0	1.620 ± 0 4 50e±0	1.300 ± 0 $3.38e\pm0$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p41F[7/2]_4 = 2p3d(T_3)$ $2p4fF[7/2]^e = 2p3d(^3F^e)$	4096 57	*	$9.99e\pm0$	1.220+2 1.82e+0	0.15C+1 9.18e-1	2.06e - 1	1.03e-1	4.30C+0	5.10e-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[7/2]_{3}^{\circ} - 2p3d(^{3}F_{2}^{\circ})$	4082.93	*	3.93e+1	7.14e+0	3.61e+0	8.12e-1	4.05e - 1	2.66e-1	2.01e-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[7/2]_{2}^{e} - 2p3d({}^{3}F_{2}^{o})$	4073.05	*	7.71e+2	1.40e+2	7.08e+1	1.59e+1	7.93e+0	5.21e+0	3.93e+0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[5/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4086.83	*	2.51e+1	4.51e+0	2.30e+0	5.34e-1	2.69e-1	1.78e-1	1.34e-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[5/2]_{2}^{e} - 2p3d({}^{3}F_{2}^{o})$	4076.93	*	2.41e+2	4.34e+1	2.21e+1	5.13e+0	2.58e+0	1.71e+0	1.29e+0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4f F[5/2]_{3}^{e} - 2p3d({}^{3}F_{4}^{o})$	4100.97	*	8.76e+0	1.58e+0	8.04e-1	1.86e-1	9.35e-2	6.19e-2	4.71e-2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[5/2]_{3}^{e} - 2p3d({}^{3}F_{3}^{o})$	4087.31	*	1.71e+2	3.08e+1	1.57e+1	3.63e+0	1.83e+0	1.21e+0	9.19e-1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4f F[5/2]_3^{e} - 2p3d(^3F_2^{o})$	4077.40	*	3.18e-1	5.72e-2	2.91e-2	6.74e-3	3.39e-3	2.24e-3	1.71e-3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4f - 3d^{1}D^{0}$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4f F[7/2]_{3}^{e} - 2p3d(^{1}D_{2}^{0})$	4171.60	*	1.60e+3	2.91e+2	1.47e+2	3.31e+1	1.65e+1	1.08e+1	8.18e+0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2p4t F[5/2]_2^c - 2p3d(^1D_2^o)$	4175.66	*	2.95e+2	5.32e+1	2.71e+1	6.29e+0	3.17e+0	2.10e+0	1.58e+0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$2p4f F[5/2]_3^e - 2p3d(^1D_2^o)$	4176.16	*	1.24e+3	2.23e+2	1.13e+2	2.62e+1	1.32e+1	8.73e+0	6.65e+0
$\begin{array}{c} 2p+d(^{3}P_{2}^{o}) - 2p4p(^{3}S_{1}^{o}) \\ 2p4d(^{3}P_{2}^{o}) - 2p4p(^{3}S_{1}^{o}) \\ 2p4d(^{3}P_{2}^{o}) - 2p4p(^{3}S_{1}^{o}) \\ 13947.86 \\ * \\ 1.70e+2 \\ 4.15e+1 \\ 2.13e+1 \\ 1.20e+1 \\ 3.52e+0 \\ 2.7e+0 \\ 1.59e+0 \\ 1.59e+0 \\ 1.59e+0 \\ 1.84e+1 \\ 2.13e+1 \\ 1.20e+1 \\ 3.52e+0 \\ 2.07e+0 \\ 1.59e+0 \\ 1.59e+0 \\ 1.84e+1 \\ 2.18e+1 \\ 2.1$	4d - 4p $2p4d(^{3}P^{0}) - 2p4p(^{3}S^{e})$	13858 50	*	1 20e±2	3 ()8e±1	1 710±1	4 61e±0	2 580±0	1 850±0	1 60e±0
$2p4d(^{3}P_{0}^{0}) - 2p4p(^{3}P_{0}^{2})$ 13425.85 * 8.74e+1 2.13e+1 1.20e+1 3.52e+0 2.07e+0 1.59e+0 1.84e+	$2p+d(^{3}P_{0}^{o}) - 2p+p(^{3}S_{0}^{e})$ $2p4d(^{3}P_{0}^{o}) - 2n4n(^{3}S_{0}^{e})$	13947 86	^ *	1.200 ± 2 1.70e+2	4.15e+1	2.32e+1	6.84e+0	4.01e+0	3.10e+0	3.57e+0
	$2p4d(^{3}P_{0}^{0}) - 2p4p(^{3}P_{0}^{e})$	13425 85	*	8.74e+1	2.13e+1	1.20e+1	3.52e+0	2.07e+0	1.59e+0	1.84e+0
$2p4d(^{3}D_{2}^{0}) - 2p4p(^{3}P_{2}^{0})$ 14195.22 * 2.69e+2 5.86e+1 3.27e+1 9.59e+0 5.54e+0 4.07e+0 3.88e+	$2p4d(^{3}D_{2}^{0}) - 2p4p(^{3}P_{2}^{e})$	14195.22	*	2.69e+2	5.86e+1	3.27e+1	9.59e+0	5.54e+0	4.07e+0	3.88e+0

						$T_{\rm e}[{\rm K}]$			
Transition	λ[Å]		125	500	1000	5000	10,000	15,000	20,000
$2p4d(^{3}D_{2}^{0}) - 2p4p(^{3}D_{2}^{e})$	13436.61	*	1.28e+2	2.78e+1	1.55e+1	4.56e+0	2.63e+0	1.94e+0	1.85e+0
$2p4d(^{3}D_{2}^{3}) - 2p4p(^{1}P_{1}^{e})$	12349.30	*	2.16e+2	4.34e+1	2.45e+1	7.82e+0	4.71e+0	3.72e+0	4.57e+0
$2p4d(^{3}D_{0}^{2}) - 2p4p(^{1}P_{0}^{e})$	12389.41	*	1.46e+2	2.22e+1	1.25e+1	4.22e+0	2.61e+0	2.00e+0	2.03e+0
$2p \cdot d(2p) - 2p \cdot p(2p)$ $2p \cdot d(^3F_{0}) - 2p \cdot p(^3D_{0}^{e})$	14358 63	*	4.40e+2	1.21e+2	6 75e+1	1 75e+1	9.55e+0	6.68e+0	5 30e+0
$2p+d(^{3}F^{0}) - 2p+p(^{3}D^{e})$	14337.71	*	$6.73e\pm 2$	1.210+2 $1.05e\pm2$	5.91e+1	1.750+1	$1.21e\pm 1$	9.57e±0	$1.10e \pm 1$
$2p4d(^{3}F_{2}^{o}) - 2p4p(^{3}D_{2}^{e})$ $2p4d(^{3}F_{2}^{o}) - 2p4p(^{3}D_{2}^{e})$	14364.86	*	2.08e+2	3.63e+1	2.08e+1	7.54e+0	4.85e+0	3.98e+0	4.94e+0
1d 2n									
$2p4d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	2496.81	*	1.24e+2	3.04e+1	1.70e+1	5.01e+0	2.94e+0	2.27e+0	2.62e+0
$2p4d(^{3}D_{0}^{2}) - 2p3p(^{3}P_{0}^{2})$	2522.24	*	4.55e+2	9.92e+1	5.53e+1	1.63e+1	9.38e+0	6.89e+0	6.58e+0
$2p4d(^{3}D_{0}^{3}) - 2p3p(^{3}S_{0}^{2})$	2416.25	*	2.64e+2	5.31e+1	3.00e+1	9.57e+0	5.77e+0	4.55e+0	5.60e+0
$2p4d(^{3}D^{o}) - 2p3p(^{3}P^{e})$	2520.21	*	2.21e+2	3.36e+1	1.89e + 1	640e+0	3.95e+0	3.04e+0	3.07e+0
$2p4d(^{3}D^{0}) - 2p3p(^{3}S^{e})$	2417 78	*	1.53e+2	2.33e+1	1.31e+1	4.42e+0	2.73e+0	2.10e+0	2.12e+0
$2p4d(^{3}E^{0}) - 2p3p(^{3}D^{e})$	2317.04	~ ~	1.330+2	1.170+2	6.40e+1	1.600 ± 1	0.180+0	6.42e+0	5.10e+0
$2p4d(T_4) = 2p3p(D_3)$ $2p4d(3E_2) = 2p2p(3D_2)$	2216.40	^	4.236+2	1.170 ± 2	0.490+1	1.090+1	9.100±0	0.420 ± 0	1.02 + 1
$2p4d(F_3) - 2p3p(D_2)$	2316.49	*	6.33e+2	9.90e+1	5.56e+1	1.85e+1	1.14e+1	9.01e+0	1.03e+1
$2p4d({}^{3}F_{2}^{5}) - 2p3p({}^{3}D_{1}^{5})$	2316.68	*	2.05e+2	3.58e+1	2.06e+1	/.44e+0	4./9e+0	3.93e+0	4.8/e+0
4p - 3d $2p4p(^{3}S^{e}) = 2p3d(^{3}P^{0})$	6800.08	*	8 18a+1	2 160+1	1.210+1	3 600+0	2.18 ± 0	1.70e+0	1.72a±0
$2p4p(^{\circ}S_{1}) - 2p3d(^{\circ}F_{2})$	(1(7.75	*	0.400 ± 1	2.100 ± 1	1.210+1	3.00e+0	2.180 ± 0	1.70e+0	1.720+0
$2p4p(^{3}D_{3}^{2}) - 2p3d(^{3}F_{4}^{2})$	6167.75	*	2.85e+2	7.39e+1	4.16e+1	1.18e+1	6.90e+0	5.13e+0	4.51e+0
$2p4p(^{3}D_{2}^{c}) - 2p3d(^{3}F_{3}^{o})$	6173.31	*	3.45e+2	5.51e+1	3.14e+1	1.12e+1	7.37e+0	6.0/e+0	6.65e + 0
$2p4p({}^{3}D_{1}^{e}) - 2p3d({}^{3}F_{2}^{o})$	6170.16	*	1.50e+2	2.66e+1	1.55e+1	6.11e+0	4.25e+0	3.61e+0	3.99e+0
$4p^{3}D^{[}e^{]} - 3s^{3}P^{0}$									
$2p4p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	1859.26	*	2.79e+2	7.22e+1	4.06e+1	1.15e+1	6.74e+0	5.01e+0	4.40e+0
$2p4p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	1857.87	*	2.34e+2	3.73e+1	2.12e+1	7.56e+0	4.99e+0	4.11e+0	4.50e+0
$2p4p(^{3}D_{1}^{\tilde{e}}) - 2p3s(^{3}P_{0}^{o})$	1858.55	*	8.28e+1	1.47e+1	8.58e+0	3.38e+0	2.35e+0	1.99e+0	2.20e+0
$4p^{3}D^{e} - 4s^{3}P^{o}$									
$2p4p(^{3}D_{3}^{e}) - 2p4s(^{3}P_{2}^{o})$	16256.20	*	9.75e+1	2.53e+1	1.42e+1	4.04e+0	2.36e+0	1.75e+0	1.54e+0
$4s^{3}P^{o} - 3p^{3}D^{e}$									
$2p4s(^{3}P_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	3328.72	*	9.75e+1	2.46e+1	1.40e+1	4.47e+0	2.89e+0	2.36e+0	2.35e+0
$3d^{3}P^{o} - 3p^{1}P^{e}$									
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{1}P_{1}^{e})$	4109.59	*	4.50e+2	1.07e+2	5.38e+1	1.07e+1	5.16e+0	3.44e+0	2.75e+0
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{1}P_{1}^{e})$	4114.33	*	1.52e+3	3.51e+2	1.78e+2	3.74e+1	1.87e+1	1.28e+1	1.08e+1
$2p3d(^{3}P_{2}^{0}) - 2p3p(^{1}P_{1}^{e})$	4123.12	*	2.80e+3	6.25e+2	3.21e+2	7.30e+1	3.83e+1	2.76e+1	2.83e+1
$3d^{3}P^{o} - 3p^{3}P^{e}$									
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}P_{1}^{e})$	5454.21	*	1.96e - 4	4.66e-5	2.34e-5	4.64e-6	2.25e-6	1.50e-6	1.20e-6
$2n3d(^{3}P_{e}^{0}) - 2n3n(^{3}P_{e}^{0})$	5480.05	*	1.52e+2	3.53e+1	1.79e+1	3.75e+0	1.88e+0	1.29e+0	1.08e+0
$2p3d(^{3}P^{0}) - 2p3p(^{3}P^{e})$	5462.58	*	7.24e - 1	1.68e-1	8.49e-2	1 78e-2	8.94e-3	6.11e-3	5.14e-3
$2p3d(^{3}P^{0}) - 2p3p(^{3}P^{e})$	5452.07	*	$1.04e\pm 2$	2 30e±1	$1.21e\pm 1$	$2.55e\pm0$	1.28e±0	8 73e_1	7 3/e_1
$2p3d(^{3}P^{0}) = 2p3p(^{3}P^{e})$	5495.65	-1- -	5.02 + 2	1.120+2	5 750+1	1.310+1	6.870+0	4.940+0	5 080+0
$2p3d(1_2) - 2p3p(1_2)$ $2p3d(3P^0) - 2p3p(3P^0)$	5478.00	т 	3.020 ± 2	1.12e+2 8.5% 2	3.750 ± 1	1.002 2	5.260.3	2 78 2 2	3.000-0
$2psu(\mathbf{r}_2) - 2psp(\mathbf{r}_1)$	5478.09	*	5.040-1	0.300-2	4.406-2	1.00e-2	5.208-5	3.788-3	3.896-3
$3d^{3}P^{0} - 3p^{3}S^{e}$	4007 20		154.0	2 65 . 1	104.1	264.0	176.0	1.10 .0	0.20 1
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}S_{1}^{e})$	4987.38	*	1.54e+2	3.65e+1	1.84e+1	3.64e+0	1.76e+0	1.18e+0	9.39e-1
$2p3d({}^{3}P_{1}^{0}) - 2p3p({}^{3}S_{1}^{e})$	4994.37	*	1.54e+2	3.56e+1	1.80e+1	3.79e+0	1.90e+0	1.30e+0	1.09e+0
$2p3d({}^{3}P_{2}^{o}) - 2p3p({}^{3}S_{1}^{e})$	5007.33	*	1.28e+2	2.87e+1	1.47e+1	3.35e+0	1.76e+0	1.27e+0	1.30e+0
$3d^{3}P^{o} - 3p^{3}D^{e}$									
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	4507.56	*	1.70e+2	3.79e+1	1.95e+1	4.43e+0	2.33e+0	1.67e+0	1.72e+0
$3d^{3}D^{o} - 3p^{3}P^{e}$ (V28)									
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}P_{2}^{e})$	5941.65	*	4.02e+3	7.90e+2	4.10e+2	9.95e+1	5.24e+1	3.66e+1	3.18e+1
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5952.39	*	1.29e-2	2.47e-3	1.29e-3	3.27e-4	1.76e-4	1.26e-4	1.19e-4
$2p3d(^{3}D_{2}^{6}) - 2p3p(^{3}P_{1}^{6})$	5931.78	*	7.64e+1	1.46e+1	7.66e+0	1.93e+0	1.04e+0	7.47e-1	7.07e-1
$2p3d(^{3}D_{1}^{2}) - 2p3p(^{3}P_{2}^{e})$	5960.90	*	4.65e+1	7.95e+0	4.18e+0	1.10e+0	6.05e-1	4.35e-1	3.93e-1
$2n3d(^{3}D_{e}^{0}) - 2n3n(^{3}P_{e}^{0})$	5940 24	*	2.27e+0	3.89e-1	2.04e - 1	5.39e-2	2.96e-2	2.13e-2	$1.92e^{-2}$
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{0}^{e})$	5927.81	*	1.14e+3	1.94e+2	1.02e+2	2.69e+1	1.48e+1	1.06e+1	9.59e+0
$3d^3D^0 - 3n^3D^e$									
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{2}^{e})$	4803.29	*	2.33e+3	4.58e+2	2.38e+2	5.77e+1	3.04e+1	2.12e+1	1.85e+1
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{2}^{e})$	4781.19	*	1.48e+2	2.92e+1	1.51e+1	3.67e+0	1.93e+0	1.35e+0	1.17e+0

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,0
$2n3d(^{3}D^{0}) - 2n3n(^{3}D^{e})$	4810 30	*	1 49e-3	2 86e-4	1 50e-4	3 78e-5	2 04e-5	1 46e-5	1 38
$2p3d(^{3}D^{0}) = 2p3p(^{3}D^{e})$	4010.50	-1-	1.476 3	2.000 + 2.130 - 3	1.300 4	$3.766 \ 3$	1.730-4	1.400 5	1.18
$2p3d(D_2) = 2p3p(D_2)$	4700.14	*	1.276-2	2.436-3	1.276-3	5.216-4	1.736-4	1.246-4	1.10
$2p3d(^{3}D_{2}^{2}) - 2p3p(^{3}D_{1}^{2})$	4774.24	*	2.83e+0	5.42e-1	2.84e-1	/.16e-2	3.86e-2	2.77e-2	2.62
$2p3d({}^{3}D_{1}^{0}) - 2p3p({}^{3}D_{2}^{e})$	4793.65	*	2.77e+2	4.75e+1	2.49e+1	6.57e+0	3.61e+0	2.60e+0	2.34
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{1}^{e})$	4779.72	*	8.93e+2	1.53e+2	8.02e+1	2.12e+1	1.16e+1	8.35e+0	7.54
$3d^3D^o - 3p^3S^e$									
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}S_{1}^{e})$	5390.69	*	1.06e+3	1.82e+2	9.55e+1	2.52e+1	1.38e+1	9.94e+0	8.98
$3d^{1}D^{o} - 3p^{3}P^{e}$									
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}P_{2}^{e})$	6086.54	*	6.07e+2	1.05e+2	5.43e+1	1.37e+1	7.41e+0	5.35e+0	5.31
$3d^{1}D^{o} - 3p^{3}S^{e}$									
$2p3d(^{1}D_{2}^{o}) - 2p3p(^{3}S_{1}^{e})$	5493.23	*	2.77e+3	4.76e+2	2.47e+2	6.26e+1	3.37e+1	2.44e+1	2.42
$3d^{1}D^{o} - 3p^{3}D^{e}$									
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}D_{3}^{e})$	4897.54	*	2.35e+2	4.04e+1	2.10e+1	5.31e+0	2.86e+0	2.07e+0	2.05
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}D_{2}^{0})$	4874.57	*	1.24e+3	2.13e+2	1.11e+2	2.80e+1	1.51e+1	1.09e+1	1.08
$2n3d(^{1}D^{0}) - 2n3n(^{3}D^{e})$	4860 17	*	1 57e+2	2 70e+1	1.40e+1	3.55e+0	1.91e+0	1.38e+0	1 37
2p3d(D ₂) 2p3p(D ₁)	1000.17		1.57012	2.70011	1.10011	5.55010	1.91010	1.50010	1.07
$3d^{3}F^{0} - 3p^{3}D^{e}$ $2p3d(^{3}F^{0}) - 2p3p(^{3}D^{e})$	5005 15	*	6 34e+3	1 51e+3	7.68e+2	1 58e+2	7 72e+1	5 16e+1	4 12
$2p3d(^{3}E^{0}) = 2p3p(^{3}D^{e})$	5025.66		6.630+2	1.240+2	6.410+1	1.500+2	8.600+0	6.40o+0	6.50
$2p_{3}(r_{3}) = 2p_{3}(D_{3})$	5023.00	*	0.030+2	1.246+2	0.410 ± 1	1.596+1	8.090+0	0.400 ± 0	0.50
$2p3d(^{3}F_{3}^{3}) - 2p3p(^{3}D_{2}^{2})$	5001.47	*	6.53e+3	1.22e+3	6.31e+2	1.57e+2	8.56e+1	6.30e+1	6.40
$2p3d({}^{3}F_{2}^{0}) - 2p3p({}^{3}D_{3}^{e})$	5040.71	*	1.47e+1	2.77e+0	1.46e+0	3.92e-1	2.23e-1	1.70e - 1	1.85
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	5016.38	*	6.31e+2	1.19e+2	6.29e+1	1.69e+1	9.60e+0	7.31e+0	7.99
$2p3d({}^{3}F_{2}^{\bar{0}}) - 2p3p({}^{3}D_{1}^{\bar{e}})$	5001.13	*	3.83e+3	7.24e+2	3.81e+2	1.02e+2	5.82e+1	4.43e+1	4.84
$3p^{1}S^{e} - 3s^{1}P^{o}$									
$2p3p(^{1}S_{0}^{e}) - 2p3s(^{1}P_{1}^{o})$	3437.14	*	1.01e+2	2.75e+1	1.60e+1	5.60e+0	3.85e+0	3.35e+0	3.39
$3p^{1}D^{e} - 3s^{1}P^{o}$									
$2p3p(^{1}D_{2}^{e}) - 2p3s(^{1}P_{1}^{o})$	3995.00	*	4.88e+2	1.30e+2	7.62e+1	2.75e+1	2.02e+1	1.92e+1	2.10
$3p^1D^e - 3s^3P^o$									
$2p3p(^{1}D_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	3955.85	*	8.20e+1	2.18e+1	1.28e+1	4.63e+0	3.40e+0	3.22e+0	3.52
$3p^{3}P^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{1}P_{1}^{o})$	4654.53	*	1.33e+2	2.76e+1	1.47e+1	4.05e+0	2.40e+0	1.83e+0	1.72
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	4667.21	*	2.75e+2	6.95e+1	4.08e+1	1.50e+1	1.14e+1	1.14e+1	1.28
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{1}P_{1}^{o})$	4674.91	*	1.52e+2	2.60e+1	1.40e+1	4.31e+0	2.71e+0	2.13e+0	2.04
$3p^{3}P^{e} - 3s^{3}P^{o}$ (V5)									
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	4630.54	*	3.18e+3	6.59e+2	3.51e+2	9.66e+1	5.74e+1	4.36e+1	4.11
$2n3n(^{3}P^{e}) - 2n3s(^{3}P^{o})$	4601 48	*	8.94e+2	1 86e+2	$9.88e \pm 1$	2 72e+1	1.61e+1	1 23e+1	1.16
$2p_{2}p_{1}(3p_{e}) = 2p_{2}p_{1}(3p_{e})$	4643.00		1 200-5	3 270-6	1.020-6	3 270-6	1.020-6	5 330-7	6.00
$2\mu 3\mu (1_1) = 2\mu 3s (1_2)$	4043.09	Ť	1.290-J	1.40-+1	1.920-0	3.276-0	1.92e = 0	3.336-7	0.02
$2p3p(^{3}P_{1}^{2}) - 2p3s(^{3}P_{1}^{2})$	4613.87	*	5.91e+1	1.49e+1	8.75e+0	3.22e+0	2.45e+0	2.44e+0	2.75
$2p3p(^{3}P_{1}^{2}) - 2p3s(^{3}P_{0}^{3})$	4607.15	*	8.60e - 2	2.17e-2	1.27e-2	4.6/e-3	3.56e-3	3.54e-3	4.00
$2p3p({}^{3}P_{0}^{e}) - 2p3s({}^{3}P_{1}^{o})$	4621.39	*	9.50e+2	1.63e+2	8.77e+1	2.70e+1	1.69e+1	1.33e+1	1.28
$3p^{3}P^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}P_{2}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1275.25	*	4.06e+2	8.44e+1	4.50e+1	1.24e+1	7.34e+0	5.59e+0	5.26
$2p3p(^{3}P_{2}^{\bar{e}}) - 2s2p^{3}(^{3}D_{2}^{\bar{o}})$	1275.04	*	2.23e+3	4.63e+2	2.47e+2	6.78e+1	4.03e+1	3.06e+1	2.89
$2p3p(^{3}P_{0}^{\tilde{e}}) - 2s2p^{3}(^{3}D_{1}^{\tilde{o}})$	1276.80	*	6.97e+2	1.19e+2	6.43e+1	1.98e+1	1.24e+1	9.79e+0	9.37
$3p^{3}S^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	5073.59	*	1.08e+2	2.03e+1	1.08e+1	3.12e+0	1.90e+0	1.49e+0	1.50
$3p^3S^e - 3s^3P^o$									
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5045.10	*	1.32e+3	2.48e+2	1.32e+2	3.81e+1	2.32e+1	1.82e+1	1.83
$2n3n(^{3}S_{e}^{e}) - 2n3s(^{3}P_{e}^{o})$	5010.62	*	6.10e+2	1.14e+2	6.09e+1	1.76e+1	1.07e+1	8.38e+0	8 43
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	5002.70	*	9.63e+2	1.80e+2	9.61e+1	2.77e+1	1.69e+1	1.32e+1	1.33
$3n^{3}se^{2}n^{3}^{3}n^{0}$									
$2p3p(^{3}S_{1}^{e}) - 2s2p^{3}(^{3}D_{1}^{o})$	1304.79	*	5.76e+2	1.08e+2	5.75e+1	1.66e+1	1.01e+1	7.91e+0	7.96
$2p3p(^{3}S_{e}^{1}) - 2s2p^{3}(^{3}D_{e}^{1})$	1304.77	*	1.70e+3	3.18e+2	1.70e+2	4.90e+1	2.99e+1	2.34e+1	2.35
$2p_{2}p_{3}p_{1}(S_{1}) - 2s_{2}p_{3}(S_{2}D_{2})$	1304.77	*	1./0e+3	3.18e+2	1.70e+2	4.90e+1	2.99e+1	2.34e+1	2.3

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20
$3p^{3}D^{e} - 3s^{3}P^{o}$									
$2p3p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	5679.56	*	7.31e+3	1.68e+3	8.77e+2	2.04e+2	1.09e+2	7.96e+1	7.0
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	5710.77	*	1.70e+3	3.03e+2	1.61e+2	4.41e+1	2.60e+1	2.03e+1	2.1
$2p3p(^{3}D_{2}^{\tilde{e}}) - 2p3s(^{3}P_{1}^{\tilde{o}})$	5666.63	*	4.71e+3	8.39e+2	4.45e+2	1.22e+2	7.19e+1	5.63e+1	5.9
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{2}^{0})$	5730.66	*	9.64e+1	1.79e+1	9.60e+0	2.82e+0	1.72e+0	1.37e+0	1.4
$2p3p(^{3}D_{e}^{a}) - 2p3s(^{3}P_{e}^{a})$	5686.21	*	1.27e+3	2.35e+2	1.26e+2	3.71e+1	2.26e+1	1.81e+1	1.9
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	5676.02	*	2.13e+3	3.95e+2	2.12e+2	6.24e+1	3.80e+1	3.03e+1	3.2
$3p^{3}D^{e} - 2s2p^{3}{}^{3}P^{o}$									
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}P_{2}^{o})$	1740.31	*	3.05e+3	7.01e+2	3.66e + 2	8.49e+1	4.55e+1	3.32e+1	2.9
$2n3n(^{3}D_{e}^{e}) - 2s2n^{3}(^{3}P_{e}^{o})$	1743.23	*	7.32e+2	1.31e+2	6.91e+1	1.90e+1	1.12e+1	8.75e+0	9.1
$2p_{2}p_{2}(D_{2}) = 2s_{2}p_{1}(T_{2})$ $2p_{3}n_{1}(^{3}D^{e}) = 2s_{2}n_{1}^{3}(^{3}P^{0})$	1743.20	*	2 25e+3	4.02e+2	2.13e+2	5.85e+1	3.44e+1	2.69e+1	2.8
$2p3p(^{3}D^{e}) - 2s2p(^{1}T_{1})$ $2p3p(^{3}D^{e}) - 2s2p^{3}(^{3}P^{0})$	1745.26	*	2.250+5 8.77e±2	$1.63e\pm 2$	2.130+2 8.73e±1	2.55e+1	1.56e±1	$1.25e \pm 1$	1.3
$2p3p(D_1) = 2s2p(T_0)$ $2p3p(3D_1) = 2s2p(T_0)$	1745.20	*	6.17e+2	1.030 ± 2	6.730 ± 1	2.376 ± 1	1.500+1	1.250 ± 1	1.5
$2p3p(^{\circ}D_{1}^{\circ}) - 2s2p^{\circ}(^{\circ}P_{1}^{\circ})$	1745.05	*	0.400+2	1.20e+2	0.430+1	1.890+1	1.15e+1	9.200+0	9.9
$3p^{3}D^{e} - 2s2p^{3}{}^{3}D^{0}$	1242 57		1.09-+2	2 40- 1	1 20- 1	2.02-+0	1 (2-+0	1 19- 0	1.0
$2p_{3}p_{1}(^{2}D_{3}^{2}) - 2s_{2}p_{1}(^{2}D_{2}^{2})$	1343.57	*	1.08e+2	2.49e+1	1.30e+1	3.02e+0	1.62e+0	1.18e+0	1.0
$2p_{3}p_{3}(D_{3}) - 2s_{2}p_{3}(D_{3})$	1343.34	*	9.20e+2	2.11e+2	1.10e+2	2.56e+1	1.3/e+1	1.00e+1	8.8
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}D_{1}^{0})$	1345.34	*	1.45e+2	2.58e+1	1.37e+1	3.76e+0	2.21e+0	1.73e+0	1.8
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1345.31	*	6.92e+2	1.23e+2	6.54e+1	1.80e+1	1.06e+1	8.27e+0	8.6
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}D_{3}^{o})$	1345.08	*	1.80e+2	3.21e+1	1.70e+1	4.67e+0	2.75e+0	2.15e+0	2.2
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}D_{1}^{o})$	1346.44	*	3.93e+2	7.28e+1	3.91e+1	1.15e+1	7.00e+0	5.59e+0	6.0
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1346.41	*	1.44e+2	2.68e+1	1.44e+1	4.23e+0	2.57e+0	2.05e+0	2.2
$3p^{3}D^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{1}P_{1}^{o})$	5747.30	*	7.52e+2	1.34e+2	7.11e+1	1.95e+1	1.15e+1	8.99e+0	9.4
$2p3p(^{3}D_{1}^{\overline{e}}) - 2p3s(^{1}P_{1}^{\overline{o}})$	5767.45	*	2.69e+2	4.98e+1	2.68e+1	7.86e+0	4.79e+0	3.82e+0	4.1
$3p^{1}P^{e} - 3s^{1}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	6482.05	*	1.06e+2	2.29e+1	1.18e+1	2.77e+0	1.51e+0	1.14e+0	1.1
$3p^{1}P^{e} - 3s^{3}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	6435.61	*	9.72e+2	2.10e+2	1.08e+2	2.54e+1	1.39e+1	1.04e+1	1.0
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	6379.62	*	5.67e+2	1.23e+2	6.33e+1	1.48e+1	8.11e+0	6.08e+0	6.0
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	6366.79	*	2.40e+2	5.19e+1	2.68e+1	6.27e+0	3.43e+0	2.57e+0	2.5
$3p^{1}P^{e} - 2s2p^{3}{}^{3}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{0}^{o})$	1805.47	*	4.25e+2	9.20e+1	4.75e+1	1.11e+1	6.09e+0	4.56e+0	4.5
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{2}^{o})$	1805.28	*	2.07e+3	4.49e+2	2.31e+2	5.43e+1	2.97e+1	2.22e+1	2.2
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{1}^{o})$	1805.24	*	1.27e+3	2.74e+2	1.42e+2	3.32e+1	1.82e+1	1.36e+1	1.3
$2s2p^{3}{}^{3}P^{o} - 2p^{2}{}^{1}D^{e}$									
$2s2p^{3}(^{3}P_{2}^{o}) - 2p^{2}(^{1}D_{2}^{e})$	1064.95	*	6.34e+3	1.38e+3	7.22e+2	3.36e+2	3.09e+2	2.64e+2	2.3
$2s2p^{3}(^{3}P_{1}^{\tilde{o}}) - 2p^{2}(^{1}D_{2}^{\tilde{e}})$	1064.96	*	3.08e+3	5.90e+2	3.13e+2	1.49e+2	1.35e+2	1.17e+2	1.0
$2s2p^{3}{}^{3}P^{o} - 2p^{2}{}^{1}S^{e}$									
$2s2p^3({}^3P_1^o)-2P^2({}^1S_0^e)$	1306.71	*	1.32e+3	2.54e+2	1.35e+2	6.39e+1	5.81e+1	5.02e+1	4.6
$2s2p^{3}{}^{3}D^{o} - 2p^{2}{}^{1}S^{e}$									
$2s2p^{3}(^{3}D_{1}^{o}) - 2P^{2}(^{1}S_{0}^{e})$	1678.89	*	8.59e+2	1.60e+2	8.84e+1	9.73e+1	9.67e+1	8.31e+1	7.3
$2s2p^{3}{}^{3}D^{o} - 2p^{2}{}^{1}D^{e}$									
$2s2p^{3}(^{3}D_{1}^{o}) - 2p^{2}(^{1}D_{2}^{e})$	1299.79	*	1.38e+3	2.56e+2	1.42e+2	1.56e+2	1.56e+2	1.34e+2	1.1
$2s2p^{3}(^{3}D_{2}^{\tilde{0}}) - 2p^{2}(^{1}D_{2}^{\tilde{e}})$	1299.81	*	3.91e+3	7.52e+2	4.13e+2	4.03e+2	3.89e+2	3.30e+2	2.9
$2s2p^{3}(^{3}D_{2}^{\tilde{0}}) - 2p^{2}(^{1}D_{2}^{\tilde{e}})$	1300.04	*	4.36e+3	9.19e+2	5.02e+2	4.76e+2	4.45e+2	3.67e+2	3.2

Table 5. Same as Table 3 but for $N_{\rm e} = 10^4 \text{ cm}^{-3}$.

						<i>T</i> _e [K]			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,000
6h – 5g									
$2p6h I[13/2]^{e} - 2p5g H[11/2]^{e}$	18622.57		1.34e+3	2.81e+2	1.32e+2	2.06e+1	8.53e+0	5.01e+0	3.35e+0
$2p6h H[11/2]^{e} - 2p5g G[9/2]^{e}$	18481.01		1.29e+3	2.70e+2	1.26e+2	1.97e+1	8.17e+0	4.81e+0	3.21e+0
$2pch H[11/2]_{6}^{2} = 2pcg G[9/2]_{5}^{2}$	17964 67		1.07e+3	2.24e+2	1.05e+2	1.64e+1	6.79e+0	3.99e+0	2.67e+0
$2p6h H[9/2]^{e}_{e} - 2p5g G[7/2]^{o}_{e}$	18480.67		1.05e+3	2.20e+2	1.03e+2	1.61e+1	6.68e+0	3.92e+0	2.63e+0
$2p6h G[9/2]^{e}_{e} = 2p5g F[7/2]^{o}_{o}$	18549.42		8.37e+2	1.75e+2	8.21e+1	1.28e+1	5.31e+0	3.12e+0	2.09e+(
$2p6h G[7/2]^{e}_{e} - 2p5g F[5/2]^{o}_{o}$	18679.36		8.61e+2	1.81e+2	8.46e+1	1.32e+1	5.48e+0	3.22e+0	2.16e+(
$2p6h I[13/2]^{\circ}_{=} - 2p5g H[11/2]^{\circ}_{=}$	18622.64		1.56e+3	3.28e+2	1.54e+2	2.40e+1	9.96e+0	5.86e+0	3.92e+(
$2p6h H[9/2]_{e}^{e} - 2p5g G[7/2]_{o}^{o}$	18533.26		1.51e+3	2.04e+2	9.02e+1	1.46e+1	6.30e+0	3.80e+0	2.59e+(
$2p6h I[11/2]^{e} - 2p5g H[9/2]^{e}$	18546.53		2.29e+3	3.09e+2	1.37e+2	2.21e+1	9.57e+0	5.78e+0	3.94e+(
$2p6h I[11/2]_{5}^{e} - 2p5g H[9/2]_{4}^{o}$	19170.43		1.90e+3	2.57e+2	1.14e+2	1.84e+1	7.95e+0	4.80e+0	3.28e+(
$2p6h H[9/2]_5^8 - 2p5g G[7/2]_4^{o}$	18533.26		1.89e+3	2.56e+2	1.13e+2	1.83e+1	7.92e+0	4.78e+0	3.26e+(
6g – 5f									
$2p6g G[9/2]_4^o - 2p5f F[7/2]_3^e$	17930.73		3.32e+2	5.16e+1	2.54e+1	5.57e+0	2.74e+0	1.77e+0	1.30e+0
$2p6g G[9/2]_5^o - 2p5f F[7/2]_4^e$	18277.37		4.13e+2	6.41e+1	3.16e+1	6.93e+0	3.41e+0	2.21e+0	1.61e+(
$2p6g F[7/2]_3^6 - 2p5f D[5/2]_2^e$	18230.35		2.44e+2	3.78e+1	1.86e+1	4.08e+0	2.01e+0	1.30e+0	9.45e-1
$2p6g F[7/2]_4^{\overline{0}} - 2p5f D[5/2]_3^{\overline{e}}$	18222.01		3.20e+2	4.97e+1	2.45e+1	5.37e+0	2.64e+0	1.71e+0	1.29e+(
6g – 4f	6410.00		2.10 2	4.01 1	0.07 1	5.10 0	0.55 0	1.65 0	1.01
$2 \text{pog } G[9/2]_{4}^{6} - 2 \text{p4f } F[7/2]_{3}^{6}$	6413.23		3.10e+2	4.81e+1	2.3/e+1	5.19e+0	2.55e+0	1.65e+0	1.21e+(
$2pog G[9/2]_5^e - 2p4f G[7/2]_4^e$	6556.32		1.90e+2	2.95e+1	1.45e+1	3.18e+0	1.57e+0	1.01e+0	/.41e-1
$2p6gG[9/2]_5^6 - 2p4fF[7/2]_4^6$	6456.97		3.96e+2	6.15e+1	3.03e+1	6.64e+0	3.27e+0	2.11e+0	1.55e+(
$2p6g F[7/2]_{3}^{\circ} - 2p4f D[5/2]_{2}^{\circ}$	6446.53		2.71e+2	4.21e+1	2.07e+1	4.55e+0	2.24e+0	1.45e+0	1.05e+0
$2p6g F[7/2]_4^6 - 2p4f D[5/2]_3^6$	6445.34		3.60e+2	5.58e+1	2.75e+1	6.03e+0	2.97e+0	1.92e+0	1.44e+(
6f - 3d	2504 10		2 22 - + 2	2 (0- 1	1 20- 1	254-0	1.00-+0	1 41- 0	110-11
$2poi F[7/2]_4^2 - 2poi(^2F_3^2)$	2504.19	*	2.22e+2	2.60e+1	1.30e+1	3.54e+0	1.99e+0	1.41e+0	1.100+0
$2p6f F[7/2]_{3}^{2} - 2p3d(^{3}F_{2}^{0})$	2500.67	*	2.56e+2	2.9/e+1	1.48e+1	3.98e+0	2.23e+0	1.58e+0	1.30e+0
$2p6f F[5/2]_2^c - 2p3d(^3D_1^0)$	2560.24	*	1.70e+2	1.98e+1	9.97e+0	2.71e+0	1.53e+0	1.08e+0	8.62e-1
$2p6f F[5/2]_3^c - 2p3d(^3D_2^o)$	2561.95	*	1.57e+2	1.82e+1	9.11e+0	2.46e+0	1.39e+0	9.85e-1	8.51e-1
$\begin{array}{l} 6d-3p\\ 2p6d(^3F_3^o)-2p3p(^3D_2^e) \end{array}$	1678.78		1.27e+2	3.45e+1	2.03e+1	6.95e+0	4.40e+0	3.36e+0	2.82e+0
5g – 4f									
$2p5g F[5/2]_3^\circ - 2p4f D[3/2]_2^\circ$	10108.45	*	1.04e+3	2.28e+2	1.11e+2	1.94e+1	8.50e+0	5.15e+0	3.53e+(
$2p5g H[11/2]_{6}^{\circ} - 2p4f G[9/2]_{6}^{\circ}$	10023.27	*	2.31e+3	5.01e+2	2.43e+2	4.24e+1	1.86e+1	1.12e+1	7.66e+(
$2p5g H[11/2]_{5}^{6} - 2p4f G[9/2]_{4}^{6}$	10035.44	*	1.84e+3	4.04e+2	1.96e+2	3.45e+1	1.51e+1	9.14e+0	6.26e+0
$2p5gG[9/2]_4^0 - 2p4fG[7/2]_2^{e^4}$	9941.81	*	6.38e+2	8.98e+1	4.12e+1	7.45e+0	3.40e+0	2.12e+0	1.48e+0
$2p5gG[9/2]_4^{\circ} - 2p4fF[7/2]_2^{\circ}$	9718.59	*	1.98e+3	2.79e+2	1.28e+2	2.31e+1	1.06e+1	6.56e+0	4.60e+0
$2p5gG[7/2]_{2}^{0} - 2p4fF[5/2]_{2}^{0}$	10070.12	*	8.60e+2	1.88e+2	9.15e+1	1.61e+1	7.04e+0	4.26e+0	2.92e+(
$2p5g H[9/2]_5^{\circ} - 2p4f G[7/2]_4^{\circ}$	9969.33	*	1.30e+3	2.84e+2	1.38e+2	2.42e+1	1.06e+1	6.43e+0	4.40e+0
$2p5gG[7/2]_4^{\circ} - 2p4fF[5/2]_3^{e}$	10085.72	*	1.17e+3	2.56e+2	1.24e+2	2.18e+1	9.56e+0	5.79e+0	3.96e+0
$2p5gG[9/2]_{5}^{\circ} - 2p4fG[7/2]_{4}^{\circ}$	10126.15	*	8.15e+2	1.15e+2	5.26e+1	9.51e+0	4.35e+0	2.70e+0	1.90e+0
$2p5gG[9/2]_5^{\breve{o}} - 2p4fF[7/2]_4^{\breve{e}}$	9891.10	*	2.50e+3	3.52e+2	1.62e+2	2.92e+1	1.33e+1	8.30e+0	5.82e+0
$2p5g H[9/2]_4^{\circ} - 2p4f G[7/2]_3^{\circ}$	10118.53	*	1.07e+3	2.33e+2	1.13e+2	1.99e+1	8.72e+0	5.28e+0	3.61e+0
$2p5g F[7/2]_3^{\vec{o}} - 2p4f D[5/2]_2^{\vec{e}}$	9868.20	*	1.67e+3	2.35e+2	1.08e+2	1.95e+1	8.90e+0	5.54e+0	3.88e+0
$2p5g F[7/2]_4^0 - 2p4f F[5/2]_3^{e}$	10250.19	*	3.64e+2	5.13e+1	2.35e+1	4.26e+0	1.94e+0	1.21e+0	8.55e-1
$2p5g F[7/2]_4^{\circ} - 2p4f D[5/2]_3^{\circ}$	9865.42	*	2.21e+3	3.11e+2	1.43e+2	2.58e+1	1.18e+1	7.34e+0	5.18e+0
5f - 4d									
$2p5f F[7/2]_4^e - 2p4d(^3D_3^o)$	9281.06	*	2.87e+2	3.81e+1	1.92e+1	4.85e+0	2.61e+0	1.80e+0	1.45e+(
$2p5f F[7/2]_3^e - 2p4d({}^3F_2^o)$	8772.93	*	2.11e+2	2.77e+1	1.39e+1	3.49e+0	1.87e+0	1.29e+0	1.04e+0
$2p5f F[5/2]_2^e - 2p4d(^3D_1^o)$	9242.02	*	2.27e+2	3.00e+1	1.51e+1	3.83e+0	2.06e+0	1.42e+0	1.13e+0
$2p5f F[5/2]_3^e - 2p4d(^1D_2^{o})$	8983.28	*	2.16e+2	2.85e+1	1.43e+1	3.61e+0	1.94e+0	1.34e+0	1.11e+(
5f - 3d									
$2p5fG[9/2]_5^e - 2p3d({}^3F_4^o)$	2885.27	*	5.75e+2	1.44e+2	7.87e+1	2.01e+1	1.05e+1	7.10e+0	5.45e+0
$2p5f D[5/2]_3^e - 2p3d(^3P_2^o)$	3082.20	*	2.71e+2	6.27e+1	3.38e+1	8.54e+0	4.47e+0	3.00e+0	2.26e+
$2p5f G[7/2]_4^{\tilde{e}} - 2p3d({}^3F_3^{\tilde{o}})$	2884.25	*	1.89e+2	4.38e+1	2.36e+1	6.00e+0	3.15e+0	2.13e+0	1.66e+
$2p5fG[7/2]_{3}^{e} - 2p3d(^{3}F_{2}^{o})$	2879.75	*	1.95e+2	4.53e+1	2.45e+1	6.20e+0	3.25e+0	2.20e+0	1.72e+0
$2p5f F[7/2]_{4}^{e} - 2p3d(^{3}D_{2}^{0})$	2976.97	*	5.93e+2	7.88e+1	3.97e+1	1.00e+1	5.41e+0	3.73e+0	2.99e+0
$2p5fG[7/2]_{4}^{e} - 2p3d(^{3}F_{2}^{o})$	2897.50	*	3.64e+2	4.83e+1	2.43e+1	6.16e+0	3.32e+0	2.29e+0	1.84e+0
$2p5f F[7/2]_{0}^{2} - 2p3d(^{1}D_{0}^{2})$	2942.23	*	2.73e+2	3.59e+1	1.80e+1	4.52e+0	2.43e+0	1.67e+0	1.35e+(
$2p5fG[7/2]^{e} - 2p3d(^{3}F^{o})$	2892.87	*	4.31e+2	5.67e+1	2.84e + 1	7.13e+0	3.83e+0	2.64e+0	2.13e+(
$2n5f F[5/2]_{e}^{e} = 2n3d(^{3}D^{0})$	2973.60	*	4.37e+2	5.79e+1	2.92e+1	7.39e+0	3.98e+0	2.74e+0	2.18e+0
-ross [0/2] 2Pou(01/	2775.00			2., 2011		1.57010	5.70010	2.7 1010	2.100 -

						$T_{\rm e}[{\rm K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,000
$\begin{array}{l} 2p5f F[5/2]_3^e - 2p3d(^3D_2^o) \\ 2p5f F[5/2]_3^e - 2p3d(^1D_2^o) \end{array}$	2975.95 2943.51	*	4.09e+2 2.73e+2	5.39e+1 3.60e+1	2.71e+1 1.81e+1	6.83e+0 4.57e+0	3.67e+0 2.46e+0	2.54e+0 1.70e+0	2.11e+0 1.41e+0
$\begin{array}{l} 5d-3p\\ 2p5d(^{3}F_{3}^{o})-2p3p(^{3}D_{2}^{e}) \end{array}$	1858.42		3.55e+2	4.61e+1	2.50e+1	8.27e+0	5.25e+0	4.42e+0	6.30e+0
$\begin{array}{l} 4f - 3d ^1 P^o \\ 2p4f D[5/2]_2^e - 2p3d(^1 P_1^o) \end{array}$	4694.64	*	6.51e+2	1.34e+2	6.68e+1	1.35e+1	6.40e+0	4.08e+0	2.93e+0
$4f - 3d^{3}P^{o}$ 2p4f $D[5/2]_{0}^{e} - 2p3d(^{3}P_{1}^{o})$	4442.01	*	5.44e+2	1.12e+2	5.58e+1	1.13e+1	5.35e+0	3.41e+0	2.45e+0
$2p4f D[5/2]_3^e - 2p3d(^3P_2^o)$	4432.74	*	1.93e+3	3.98e+2	1.98e+2	3.99e+1	1.90e+1	1.22e+1	8.84e+0
$4f - 3d^{3}D^{0}$									• • • •
$2p4f D[5/2]_3^e - 2p3d(^3D_3^0)$	4179.67	*	4.54e+2	9.37e+1	4.66e+1	9.39e+0	4.48e+0	2.86e+0	2.08e+0
$2p4t F[7/2]_4^6 - 2p3d(^3D_3^6)$	4199.98	*	4.04e+2	7.85e+1	3.88e+1	7.8/e+0	3.78e+0	2.45e+0	1.86e+0
$2p41 F[7/2]_3 - 2p30(^{\circ}D_2)$	4193.97	*	2.100+2	4.21e+1	2.060 ± 1	4.210+0 5.40o+1	2.020 ± 0	1.510+0 1.750+1	9.946-1
$2p41 F[7/2]_4 - 2p30(D_3)$ $2p4f F[7/2]^6 - 2p3d(^3D^6)$	4241.79	*	$1.85e\pm 2$	2.550+2 2.75e+1	$1.32e \pm 1$	2.490 ± 1	2.000 ± 1 1 32e ± 0	1.730+1 8 50e_1	1.550 ± 1
$2p4f F[7/2]_3^\circ = 2p3d(^3D_3^\circ)$	4237.05	*	8.82e+2	1.32e+2	6.32e+1	1.29e+1	6.29e+0	4.11e+0	3.14e+0
$2p4f F[5/2]_{a}^{a} - 2p3d(^{3}D_{a}^{o})$	4236.93	*	2.16e+3	3.12e+2	1.49e+2	3.07e+1	1.50e+1	9.85e+0	7.53e+0
$2p4f F[5/2]_3^e - 2p3d(^3D_2^o)$	4241.76	*	2.08e+3	3.00e+2	1.43e+2	2.94e+1	1.44e+1	9.41e+0	7.32e+0
$4f-3d\ ^1F^o$									
$2p4fG[9/2]_4^e - 2p3d(^1F_3^o)$	4530.41	*	1.84e+3	4.18e+2	2.11e+2	4.23e+1	1.99e+1	1.28e+1	9.57e+0
$2p4fG[7/2]_4^e - 2p3d({}^1F_3^o)$	4552.52	*	9.12e+2	1.77e+2	8.76e+1	1.78e+1	8.53e+0	5.53e+0	4.21e+0
$2p4f F[5/2]_3^e - 2p3d({}^1F_3^e)$	4608.09	*	2.17e+2	3.13e+1	1.50e+1	3.07e+0	1.50e+0	9.83e-1	7.64e-1
$4f - 3d^{3}F^{0}$	4011 82	di.	2.61×10^{-10}	5.062 1	2.002 1	6.010 2	2820 2	1 700 2	1 270 2
$2p41 D[3/2]_2 - 2p30(^{3}F_3)$	4011.82	*	2.010 ± 0	3.90e - 1	5.00e - 1	0.01e - 2	1.220.2	1.79e-2 8.27o 4	1.27e-2
$2p41 D[3/2]_2 - 2p30(\Gamma_2)$ $2p4f D[3/2]^e - 2p3d(^3F^0)$	4002.28	*	1.230-1 3.44e±0	2.796-2 7.85e-1	1.410-2 3.06e-1	2.02e-3 7.05e-2	1.33e - 3 3.75e - 2	3.37e-4	$1.68e_{-2}$
$2p41 D[5/2]_1 - 2p30(T_2)$ $2p4f D[5/2]^e - 2p3d(^3F^0)$	4002.87	*	7.03e+0	1.65e+0	7.21e-1	1.95e-2 1.45e-1	5.75e-2 6.92e-2	$4.37e^{-2}$	3.17e-2
$2pHD[5/2]_2 = 2p3d(T_3)$ $2p4fD[5/2]^e = 2p3d(^3F^o)$	4014 35	*	7.03e-1	1.45e-1	7.21c 1 7.21e-2	1.45e-2	6.92e-3	4.41e-3	3.17e-3
$2p4f D[5/2]_2^{e} - 2p3d(^3F_0^{o})$	4037.96	*	1.68e+1	3.46e+0	1.72e+0	3.47e-1	1.65e-1	1.06e-1	7.68e-2
$2p4f D[5/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4024.71	*	4.15e-1	8.56e-2	4.26e-2	8.59e-3	4.09e-3	2.61e-3	1.90e-3
$2p4f D[5/2]_{3}^{e} - 2p3d(^{3}F_{2}^{o})$	4015.11	*	1.30e-2	2.68e-3	1.34e-3	2.69e-4	1.28e-4	8.19e-5	5.96e-5
$2p4fG[9/2]_4^{e} - 2p3d({}^3F_4^{o})$	4039.34	*	5.39e+1	1.23e+1	6.18e+0	1.24e+0	5.84e-1	3.74e-1	2.80e-1
$2p4fG[9/2]_4^e - 2p3d(^3F_3^o)$	4026.08	*	8.62e+2	1.96e+2	9.87e+1	1.98e+1	9.34e+0	5.98e+0	4.48e+0
$2p4fG[9/2]_5^e - 2p3d({}^3F_4^o)$	4041.31	*	3.49e+3	7.90e+2	3.98e+2	8.00e+1	3.79e+1	2.43e+1	1.79e+1
$2p4fG[7/2]_{4}^{e} - 2p3d({}^{3}F_{4}^{o})$	4056.91	*	3.17e+2	6.16e+1	3.05e+1	6.18e+0	2.97e+0	1.92e+0	1.46e+0
$2p4f G[7/2]_4^e - 2p3d({}^3F_3^e)$	4043.53	*	1.81e+3	3.51e+2	1.73e+2	3.52e+1	1.69e+1	1.09e+1	8.32e+0
$2p4f G[7/2]_3^2 - 2p3d(^3F_4)$	4058.16	*	7.98e+0	1.55e+0	7.6/e - 1	1.55e-1	7.44e-2	4.82e-2	3.6/e-2
$2p41 G[7/2]_{3}^{2} - 2p3d(^{3}F_{3}^{2})$	4044.78	*	2.89e+2	5.63e+1	2./8e+1	5.62e+0	2.70e+0	1./5e+0	1.33e+0
$2p4IG[7/2]_{3}^{2} - 2p3d(^{2}F_{2}^{2})$ $2p4fE[7/2]_{3}^{6} - 2p3d(^{3}F_{2}^{6})$	4035.08	*	1.92e+3	3.74e+2	1.85e+2 2.05e+1	3.74e+1	1.790+1	1.100+1 1.340+0	8.82e+0 1.02e+0
$2p41 F[7/2]_4 - 2p30(F_4)$ $2p4f F[7/2]^e - 2p3d(^3F^0)$	4093.90	*	7.04e+2	1.200 ± 1	5.03e+1	4.210 ± 0 1 04e+1	5.03e+0	3.32e+0	2.52e+0
$2p4f F[7/2]_4^2 - 2p3d(^3F_9^0)$	4096.57	*	1.05e+2	1.58e+0	7.57e-1	1.55e-1	7.53e-2	4.92e-2	3.75e-2
$2p4f F[7/2]_{2}^{e} - 2p3d({}^{3}F_{2}^{o})$	4082.93	*	4.16e+1	6.20e+0	2.98e+0	6.09e-1	2.96e-1	1.93e-1	1.48e-1
$2p4f F[7/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4073.05	*	8.15e+2	1.22e+2	5.84e+1	1.19e+1	5.81e+0	3.79e+0	2.89e+0
$2p4f F[5/2]_2^6 - 2p3d(^3F_3^6)$	4086.83	*	2.70e+1	3.89e+0	1.86e+0	3.83e-1	1.88e-1	1.23e-1	9.40e-2
$2p4f F[5/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4076.93	*	2.59e+2	3.74e+1	1.79e+1	3.68e+0	1.80e+0	1.18e+0	9.03e-1
$2p4f F[5/2]_3^{\tilde{e}} - 2p3d(^3F_4^{\tilde{o}})$	4100.97	*	9.43e+0	1.36e+0	6.50e-1	1.33e-1	6.51e-2	4.27e-2	3.32e-2
$2p4f F[5/2]_3^{e} - 2p3d(^3F_3^{o})$	4087.31	*	1.84e+2	2.66e+1	1.27e+1	2.60e+0	1.27e+0	8.33e-1	6.48e-1
$2p4f F[5/2]_3^e - 2p3d({}^3F_2^o)$	4077.40	*	3.42e-1	4.93e-2	2.35e-2	4.83e-3	2.36e-3	1.55e-3	1.20e-3
$4f - 3d^{1}D^{0}$	4171 60		1.60 2	0.50 0	1.01 0	0.46	1.01 1	7.00	< 02 0
$2p41 F[7/2]_{3}^{\circ} - 2p3d(^{1}D_{2}^{\circ})$	4171.60	*	1.69e+3	2.53e+2	1.21e+2	2.48e+1	1.21e+1	7.88e+0	6.02e+0
$2p4f F[5/2]_{3}^{e} - 2p3d(^{1}D_{2}^{o})$ $2p4f F[5/2]_{3}^{e} - 2p3d(^{1}D_{2}^{o})$	41/5.66 4176.16	*	5.18e+2 1.33e+3	4.59e+1 1.92e+2	2.19e+1 9.17e+1	4.52e+0 1.88e+1	2.21e+0 9.18e+0	1.45e+0 6.02e+0	1.11e+0 4.68e+0
4d – 4p									
$2p4d({}^{3}P_{1}^{0}) - 2p4p({}^{3}S_{1}^{e})$	13858.59	*	1.34e+2	3.25e+1	1.83e+1	5.51e+0	3.25e+0	2.39e+0	2.12e+0
$2p4d(^{3}P_{2}^{0}) - 2p4p(^{3}S_{1}^{e})$	13947.86	*	1.90e+2	4.28e+1	2.38e+1	7.14e+0	4.24e+0	3.37e+0	4.45e+0
$2p4d(^{3}P_{2}^{0}) - 2p4p(^{3}P_{2}^{e})$	13425.85	*	9.75e+1	2.20e+1	1.22e+1	3.67e+0	2.18e+0	1.73e+0	2.29e+0
$2p4d(^{3}D_{3}^{o}) - 2p4p(^{3}P_{2}^{e})$	14195.22	*	3.00e+2	5.90e+1	3.25e+1	9.76e+0	5.78e+0	4.33e+0	4.27e+0

						$T_{\rm e}[{\rm K}]$			
Transition	λ[Å]		125	500	1000	5000	10,000	15,000	20,000
$2n4d(^{3}D_{0}^{0}) - 2n4n(^{3}D_{0}^{e})$	13436.61	*	1.42e+2	2.81e+1	1.54e + 1	4.64e+0	2.75e+0	2.06e+0	2.03e+0
$2p4d(^{3}D_{0}^{2}) - 2p4p(^{1}P_{1}^{e})$	12349.30	*	2.41e+2	4.27e+1	2.31e+1	6.89e+0	4.11e+0	3.41e+0	5.29e+0
$2p4d(^{3}D_{1}^{2}) - 2p4p(^{1}P_{1}^{e})$	12389.41	*	1.60e+2	2.07e+1	1.09e+1	3.28e+0	1.97e+0	1.54e+0	1.85e+0
$2p4d({}^{3}F_{4}^{0}) - 2p4p({}^{3}D_{2}^{0})$	14358.63	*	5.10e+2	1.33e+2	7.61e+1	2.37e+1	1.41e+1	1.05e+1	8.61e+0
$2p4d({}^{3}F_{3}^{o}) - 2p4p({}^{3}D_{2}^{e})$	14337.71	*	7.26e+2	1.01e+2	5.46e+1	1.69e+1	1.03e+1	8.23e+0	1.05e+1
$2p4d({}^{3}F_{2}^{o}) - 2p4p({}^{3}D_{1}^{e})$	14364.86	*	2.42e+2	3.41e+1	1.80e+1	5.47e+0	3.35e+0	2.82e+0	4.31e+0
4d - 3p									
$2p4d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	2496.81	*	1.39e+2	3.13e+1	1.74e+1	5.23e+0	3.10e+0	2.47e+0	3.26e+0
$2p4d(^{3}D_{3}^{o}) - 2p3p(^{3}P_{2}^{e})$	2522.24	*	5.08e+2	1.00e+2	5.50e+1	1.65e+1	9.79e+0	7.34e+0	7.23e+0
$2p4d({}^{3}D_{2}^{\bar{0}}) - 2p3p({}^{3}S_{1}^{\bar{e}})$	2416.25	*	2.95e+2	5.23e+1	2.82e+1	8.43e+0	5.03e+0	4.17e+0	6.47e+0
$2p4d(^{3}D_{1}^{o}) - 2p3p(^{3}P_{0}^{e})$	2520.21	*	2.42e+2	3.13e+1	1.65e+1	4.97e+0	2.99e+0	2.34e+0	2.80e+0
$2p4d(^{3}D_{1}^{o}) - 2p3p(^{3}S_{1}^{e})$	2417.78	*	1.67e+2	2.16e+1	1.14e+1	3.44e+0	2.07e+0	1.62e+0	1.94e+0
$2p4d({}^{3}F_{4}^{0}) - 2p3p({}^{3}D_{3}^{e})$	2317.04	*	4.90e+2	1.28e+2	7.32e+1	2.27e+1	1.36e+1	1.01e+1	8.28e+0
$2p4d({}^{3}F_{3}^{o}) - 2p3p({}^{3}D_{2}^{e})$	2316.49	*	6.83e+2	9.51e+1	5.14e+1	1.59e+1	9.64e+0	7.74e+0	9.88e+0
$2p4d({}^{3}F_{2}^{0}) - 2p3p({}^{3}D_{1}^{e})$	2316.68	*	2.38e+2	3.36e+1	1.77e+1	5.39e+0	3.30e+0	2.79e+0	4.25e+0
4p - 3d	c000.00						0.70	• • • •	2 1 2 0
$2p4p({}^{3}S_{1}^{e}) - 2p3d({}^{3}P_{2}^{o})$	6809.98	*	9.46e+1	2.26e+1	1.2/e+1	4.04e+0	2.52e+0	2.00e+0	2.15e+0
$2p4p(^{3}D_{3}^{2}) - 2p3d(^{3}F_{4}^{0})$	6167.75	*	3.25e+2	7.95e+1	4.5/e+1	1.50e+1	9.48e+0	7.3/e+0	6.64e+0
$2p4p(^{3}D_{2}^{2}) - 2p3d(^{3}F_{3}^{0})$	61/3.31	*	3.76e+2	5.30e+1	2.89e+1	9.54e+0	6.16e+0	5.11e+0	6.14e+0
$2p4p(^{3}D_{1}^{2}) - 2p3d(^{3}F_{2}^{3})$	6170.16	*	1.73e+2	2.51e+1	1.35e+1	4.54e+0	3.03e+0	2.59e+0	3.24e+0
$4p^{3}D^{e} - 3s^{3}P^{o}$	1070.04		0.15 0			= .			c 10 0
$2p4p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	1859.26	*	3.17e+2	7.76e+1	4.46e+1	1.47e+1	9.26e+0	7.20e+0	6.49e+0
$2p4p(^{3}D_{e}^{2}) - 2p3s(^{3}P_{1}^{0})$	1857.87	*	2.54e+2	3.59e+1	1.96e+1	6.45e+0	4.17e+0	3.46e+0	4.16e+0
$2p4p(^{3}D_{1}^{2}) - 2p3s(^{3}P_{0}^{3})$	1858.55	*	9.58e+1	1.39e+1	7.46e+0	2.51e+0	1.6/e+0	1.43e+0	1.79e+0
$4p^{3}D^{e} - 4s^{3}P^{o}$									
$2p4p(^{3}D_{3}^{e}) - 2p4s(^{3}P_{2}^{o})$	16256.20	*	1.11e+2	2.72e+1	1.56e+1	5.13e+0	3.24e+0	2.52e+0	2.27e+0
$4s^{3}P^{0} - 3n^{3}D^{e}$									
$2p4s(^{3}P_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	3328.72	*	1.09e+2	2.59e+1	1.50e+1	5.41e+0	3.71e+0	3.14e+0	3.20e+0
$3d^{3}P^{0} = 3n^{1}P^{e}$									
$2n3d(^{3}P^{0}) - 2n3n(^{1}P^{e})$	4109 59	*	4 45e+2	1.05e+2	5 54e+1	1 32e+1	6 97e+0	4 83e+0	3 90e+0
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{1}P_{1}^{0})$	4114 33	*	1.150+2 1.52e+3	3.41e+2	1.78e+2	4 24e+1	2.24e+1	1.57e+1	1 35e+1
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{1}P_{1}^{e})$	4123.12	*	2.84e+3	5.95e+2	3.08e+2	7.35e+1	3.92e+1	2.89e+1	3.33e+1
$3d^{3}D^{0}$ $3n^{3}D^{e}$ (V20)									
$2n3d(^{3}P^{0}) - 2n3n(^{3}P^{e})$	5454 21	*	1.94e - 4	459e-5	241e-5	5 76e-6	3 04e-6	2 11e-6	1 70e-6
$2p3d(^{3}P^{0}) - 2p3p(^{3}P^{e})$	5480.05	*	1.53e+2	3 42e+1	1 79e+1	4.26e+0	2 25e+0	1.58e+0	1.760 0 1.35e+0
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}P_{2}^{e})$	5462.58	*	7.25e-1	1.63e-1	8.49e-2	2.02e-2	1.07e-2	7.49e-3	6.43e-3
$2p3d(^{3}P_{1}^{\circ}) - 2p3p(^{3}P_{2}^{\circ})$	5452.07	*	1.04e+2	2.32e+1	1.21e+1	2.89e+0	1.53e+0	1.07e+0	9.19e-1
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}P_{0}^{e})$	5495.65	*	5.10e+2	1.07e+2	5.52e+1	1.32e+1	7.03e+0	5.18e+0	5.97e+0
$2p3d(^{3}P_{0}^{2}) - 2p3p(^{3}P_{1}^{2})$	5478.09	*	3.90e-1	8.16e-2	4.22e-2	1.01e-2	5.38e-3	3.97e-3	4.57e-3
$3u^{2}P^{2} - 3p^{2}S^{2}$	1007 20		1.520+2	3 500 + 1	1.800 + 1	1 520 10	2 282 10	165010	1 220 1 0
$2p3d(^{2}P_{0}^{2}) - 2p3p(^{2}S_{1}^{2})$ $2p3d(^{3}P_{0}^{2}) - 2p3p(^{3}S_{1}^{2})$	4987.38	*	1.52e+2 1.54a+2	3.39e+1	1.89e+1	4.52e+0 4.30a+0	2.380+0	1.050+0	1.33e+0 1.27a+0
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}S_{1}^{e})$ $2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}S_{1}^{e})$	4994.37 5007.33	*	1.34e+2 1.30e+2	2.73e+1	1.80e+1 1.41e+1	4.30e+0 3.37e+0	2.27e+0 1.80e+0	1.39e+0 1.33e+0	1.57e+0 1.53e+0
$3d^{3}P^{0} - 3p^{3}D^{0}$ $2n3d(^{3}P^{0}) - 2n3n(^{3}D^{0})$	4507.56	*	1 730+2	3610+1	1.870+1	1 160+0	2 38010	1 750+0	2.020+0
$2p3u(1_2) - 2p3p(D_3)$	4307.30	*	1.756+2	5.010+1	1.0/0+1	4.400+0	2.386+0	1.756+0	2.020+0
$3d^{3}D^{0} - 3p^{3}P^{e}$ (V28)	5041 65		4 07- 12	7.05-1.0	2 (7- 1)	0.70- 1	4 (0 - 1	2 22- 1	2.02- 1
$2p_{3}u(2D_{3}) - 2p_{3}p(2P_{2})$	5941.05	*	4.2/0+5	1.250+2	3.0/e+2	0.700+1	4.090+1	5.55e+1	5.05e+1
$2p_{2}u(^{2}D_{2}) - 2p_{2}p(^{2}P_{2})$	5952.39 5021 79	*	1.39e-2 8.20a ± 1	2.25e-5	1.13e-3	2.71e-4	1.40e-4	1.0/e-4	1.12e-4
$2\mu_{3}u(D_{2}) - 2\mu_{3}p(P_{1})$ $2\mu_{3}d(^{3}D^{0}) - 2\mu_{3}n(^{3}D^{0})$	5060.00	*	0.200+1	1.330+1 7 00a + 0	3.52a+0	8 170 1	0.02e - 1	3 310 1	3 3 2 2 1
$2\mu_{3}u(D_{1}) = 2\mu_{3}\mu(T_{2})$ $2\mu_{3}u(^{3}D^{0}) = 2\mu_{3}u(^{3}D^{0})$	500.90	۰ ب	7.770+1 2.440+0	3 470-1	1.72 - 1	4.14 - 2	7.370-1	1.62 - 2	1.63 - 2
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}P_{1}^{e})$	5927.81	^ *	1.22e+3	1.73e+2	8.61e+1	2.07e+1	1.12e+1	8.10e+0	8.13e+0
	2,21.01								
$3d^{3}D^{0} - 3p^{3}D^{e}$ (V20) $2n3d(^{3}D^{0}) - 2n3n(^{3}D^{e})$	1802 20	.	2 18012	1 200 1 2	2 130 1 2	5 000 1	2 72a + 1	1 020 1	1760 1
$2\mu_{3}u(D_{3}) - 2\mu_{3}p(D_{3})$ $2\mu_{3}d(D_{0}) - 2\mu_{3}n(D_{0})$	4003.29 2781-10	*	2.400+3 1 58≏±2	4.200+2 2.680±1	2.150+2 1 35e±1	3.090+1 3.240±0	2.720+1 1 730±0	1.930+1 1.930±0	1.700+1 1.12e±0
$2p3u(D_3) - 2p3p(D_2)$	7/01.19	ث	1.30672	2.00071	1.55671	J.2+CTU	1.756+0	1.23670	1.12670

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,
$2n3d(^{3}D_{e}^{0}) - 2n3n(^{3}D_{e}^{0})$	4810.30	*	1.60e-3	2.61e-4	1.31e-4	3.14e-5	1.69e-5	1.23e-5	1.30
$2p3d(^{3}D^{0})$ $2p3p(^{3}D^{0})$	1788 14		1.369-2	2.010	1 1 1 9 - 3	2.670-4	1.430-4	1.050-4	1 1
$2p3d(D_2) = 2p3p(D_2)$	4788.14	*	1.306-2	2.210-3	2.49 1	2.076-4	1.430-4	1.050-4	1.1
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{1}^{0})$	4//4.24	*	3.04e+0	4.94e - 1	2.48e-1	5.94e-2	3.19e-2	2.34e-2	2.4
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{2}^{e})$	4793.65	*	2.98e+2	4.23e+1	2.10e+1	5.05e+0	2.73e+0	1.98e+0	1.9
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}D_{1}^{e})$	4779.72	*	9.59e+2	1.36e+2	6.77e+1	1.63e+1	8.77e+0	6.37e+0	6.3
$3d^{3}D^{0} - 3p^{3}S^{e}$	5200 (0		1 14 2	1 (2-+2	0.06-1	1.04-+1	1.04-+1	7.59 0	7.0
$2p3d(^{5}D_{1}^{5}) - 2p3p(^{5}S_{1}^{5})$	5390.69	*	1.14e+3	1.62e+2	8.06e+1	1.94e+1	1.04e+1	/.58e+0	7.6
$3d^{1}D^{o} - 3p^{3}P^{e}$									
$2p3d(^{1}D_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	6086.54	*	6.41e+2	9.39e+1	4.69e+1	1.12e+1	6.00e+0	4.47e+0	5.2
$3d^{1}D^{0} - 3p^{3}S^{e}$									
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}S_{1}^{e})$	5493.23	*	2.92e+3	4.27e+2	2.13e+2	5.10e+1	2.73e+1	2.03e+1	2.4
$3d^{1}D^{0} - 3p^{3}D^{e}$	4907 54		0.49 . 0	2 (2 . 1	1.01 . 1	4.22 . 0	0.22 + 0	1.72 . 0	•
$2p3d(^{1}D_{2}^{2}) - 2p3p(^{3}D_{3}^{2})$	4897.54	*	2.48e+2	3.63e+1	1.81e+1	4.33e+0	2.32e+0	1.73e+0	2.0
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4874.57	*	1.31e+3	1.91e+2	9.54e+1	2.28e+1	1.22e+1	9.09e+0	1.0
$2p3d(^{1}D_{2}^{o}) - 2p3p(^{3}D_{1}^{e})$	4860.17	*	1.66e+2	2.42e+1	1.21e+1	2.89e+0	1.55e+0	1.15e+0	1.3
$3d^{3}F^{o} - 3p^{3}D^{e}$ (V19)			<i>c</i> 10 -	1	.	105 5	107 -		
$2p3d({}^{3}F_{4}^{0}) - 2p3p({}^{3}D_{3}^{e})$	5005.15	*	6.48e+3	1.50e+3	7.94e+2	1.95e+2	1.05e+2	7.39e+1	6.0
$2p3d(^{3}F_{3}^{0}) - 2p3p(^{3}D_{3}^{e})$	5025.66	*	6.85e+2	1.15e+2	5.90e+1	1.46e+1	7.92e+0	5.87e+0	6.3
$2p3d(^{3}F_{2}^{o}) - 2p3p(^{3}D_{2}^{o})$	5001.47	*	6.75e+3	1.13e+3	5.81e+2	1.43e+2	7.80e+1	5.78e+1	6.2
$2n3d({}^{3}F_{0}^{2}) - 2n3n({}^{3}D_{0}^{2})$	5040 71	*	1.57e+1	2.53e+0	1.28e+0	3.15e-1	1.73e-1	1.32e - 1	1.6
$2p3d(^{3}F^{0}) = 2p3p(^{3}D^{e})$	5016.71	•	6.76e+2	1.09e+2	$5.52e \pm 1$	1.36e±1	7.43e±0	5.69e±0	7.0
$2p3d(P_2) = 2p3p(D_2)$	5001.12	Ť	4.10-+2	1.096+2	3.320 ± 1	1.300+1	1.430+0	2.45-+1	1.0
$2p3d(^{\circ}F_{2}^{\circ}) - 2p3p(^{\circ}D_{1}^{\circ})$	5001.15	*	4.10e+5	0.01e+2	3.34e+2	8.22e+1	4.50e+1	3.45e+1	4.3
$3p^{1}S^{e} - 3s^{1}P^{o}$									
$2p3p(^{1}S_{0}^{c}) - 2p3s(^{1}P_{1}^{c})$	3437.14	*	1.13e+2	2.84e+1	1.63e+1	5.71e+0	3.93e+0	3.43e+0	3.4
$3p^{1}D^{e} - 3s^{1}P^{o}$	2007.00				- - - -		2 02 1	1	
$2p3p(^{1}D_{2}^{c}) - 2p3s(^{1}P_{1}^{0})$	3995.00	*	5.45e+2	1.34e+2	7.73e+1	2.76e+1	2.03e+1	1.93e+1	2.1
$3p^{1}D^{e} - 3s^{3}P^{o}$	2022.02				1.20		a (a		
$2p3p(^{1}D_{2}^{2}) - 2p3s(^{3}P_{1}^{3})$	3955.85	*	9.1/e+1	2.26e+1	1.30e+1	4.64e+0	3.42e+0	3.25e+0	3.5
$3p^{3}P^{e} - 3s^{1}P^{o}$	4654.50		1 42 2	0.62 . 1	1.20 . 1	2.01 . 0	0.20 . 0	1.07 .0	1.0
$2p3p(^{3}P_{2}^{c}) - 2p3s(^{4}P_{1}^{c})$	4654.53	*	1.42e+2	2.63e+1	1.38e+1	3.91e+0	2.39e+0	1.8/e+0	1.8
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	4667.21	*	3.03e+2	6.93e+1	3.96e+1	1.42e+1	1.09e+1	1.09e+1	1.2
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{1}P_{1}^{o})$	4674.91	*	1.64e+2	2.37e+1	1.22e+1	3.47e+0	2.15e+0	1.71e+0	1.7
$3p^{3}P^{e} - 3s^{3}P^{0}$			2.10.2	< a a					
$2p3p(^{3}P_{2}^{2}) - 2p3s(^{3}P_{2}^{2})$	4630.54	*	3.40e+3	6.28e+2	3.30e+2	9.34e+1	5./le+l	4.4/e+1	4.4
$2p3p({}^{5}P_{2}^{e}) - 2p3s({}^{5}P_{1}^{o})$	4601.48	*	9.56e+2	1.77e+2	9.29e+1	2.63e+1	1.61e+1	1.26e+1	1.2
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	4643.09	*	1.42e-5	3.26e-6	1.86e-6	6.67e-7	5.10e-7	5.14e-7	5.9
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	*	6.51e+1	1.49e+1	8.51e+0	3.05e+0	2.33e+0	2.35e+0	2.7
$2p3p(^{3}P_{e}^{1}) - 2p3s(^{3}P_{o}^{1})$	4607.15	*	9.46e-2	2.16e-2	1.24e-2	4.43e-3	3.39e-3	3.41e-3	3.9
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	*	1.03e+3	1.49e+2	7.63e+1	2.17e+1	1.35e+1	1.07e+1	1.1
$3p^{3}P^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}P_{2}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1275.25	*	4.35e+2	8.03e+1	4.22e+1	1.20e+1	7.31e+0	5.72e+0	5.6
$2p3p(^{3}P_{e}^{e}) - 2s2n^{3}(^{3}D_{e}^{0})$	1275.04	*	2.38e+3	4.41e+2	2.32e+2	6.55e+1	4.01e+1	3.14e+1	31
$2p3p(^{3}P_{0}^{e}) - 2s2p^{3}(^{3}D_{1}^{o})$	1276.80	*	7.53e+2	1.09e+2	5.60e+1	1.60e+1	9.89e+0	7.86e+0	8.1
$3p^{3}S^{e} - 3s^{1}P^{0}$									
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	5073.59	*	1.16e+2	1.89e+1	9.76e+0	2.73e+0	1.67e+0	1.34e+0	1.4
$3p^{3}S^{e} - 3s^{3}P^{o}$									
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5045.10	*	1.41e+3	2.30e+2	1.19e+2	3.33e+1	2.04e+1	1.63e+1	1.8
$2p3p(^{3}S_{1}^{4}) - 2p3s(^{3}P_{0}^{2})$	5010.62	*	6.52e+2	1.06e+2	5.49e+1	1.54e+1	9.40e+0	7.51e+0	8.4
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	5002.70	*	1.03e+3	1.68e+2	8.67e+1	2.42e+1	1.48e+1	1.19e+1	1.3
$3n^{3}S^{e} - 2s2n^{3}{}^{3}D^{0}$									
$2p3p(^{3}S_{1}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1304.79	*	6.15e+2	1.00e+2	5.18e+1	1.45e+1	8.88e+0	7.09e+0	7.9
$2n3n(^{3}S^{e}) - 2s^{2}n^{3}(^{3}D^{0})$	1304 77	*	1 820+2	2 96012	1 53012	4 20011	2 620+1	2 10e±1	23
$2\mu_{2}\mu_{1}$ μ_{1} μ_{2} μ_{2} μ_{1} μ_{2}	1304.77	1	1.04673	2.70072	1.55672	T.27CT1	2.02671	2.10071	2.5

						<i>T</i> _e [K]			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,
$3p^{3}D^{e} - 3s^{3}P^{o}$ (V3)									
$2p3p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	5679.56	*	7.66e+3	1.67e+3	8.92e+2	2.37e+2	1.36e+2	1.03e+2	9.1
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	5710.77	*	1.78e+3	2.82e+2	1.46e+2	3.88e+1	2.26e+1	1.79e+1	2.0
$2p3p(^{3}D_{2}^{\tilde{e}}) - 2p3s(^{3}P_{1}^{\tilde{o}})$	5666.63	*	4.93e+3	7.81e+2	4.05e+2	1.07e+2	6.25e+1	4.94e+1	5.6
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5730.66	*	1.05e+2	1.64e+1	8.36e+0	2.21e+0	1.30e+0	1.05e+0	1.2
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{1}^{e})$	5686.21	*	1.38e+3	2.15e+2	1.10e+2	2.91e+1	1.71e+1	1.38e+1	1.6
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	5676.02	*	2.32e+3	3.62e+2	1.85e+2	4.88e+1	2.87e+1	2.32e+1	2.8
$3p^{3}D^{e} - 2s2p^{3}{}^{3}P^{o}$									
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}P_{2}^{o})$	1740.31	*	3.20e+3	6.96e+2	3.72e+2	9.88e+1	5.69e+1	4.29e+1	3.8
$2p3p(^{3}D_{e}^{3}) - 2s2p^{3}(^{3}P_{e}^{5})$	1743.23	*	7.67e+2	1.21e+2	6.29e+1	1.67e+1	9.72e+0	7.69e+0	8.7
$2p3p(^{3}D_{e}^{2}) - 2s2p^{3}(^{3}P_{e}^{0})$	1743.20	*	2.36e+3	3.74e+2	1.94e+2	5.14e+1	2.99e+1	2.37e+1	2.6
$2n^{3}n^{(3}D^{e}) - 2s^{2}n^{3}(^{3}P^{o})$	1745.26	*	9 53e+2	1.49e+2	7.60e+1	2.01e+1	1.18e+1	9.54e+0	11
$2p_{2}p_{1}(D_{1}) = 2s_{2}p_{1}(T_{0})$ $2p_{3}p_{1}(^{3}D^{e}) = 2s_{2}p_{1}(^{3}P^{0})$	1745.05	•	$7.02e\pm 2$	1.19e+2	5.60e+1	1.48e+1	8 70e±0	7.03e±0	8 5
$2psp(D_1) - 2s2p(T_1)$	1745.05	*	7.020+2	1.100+2	5.000+1	1.400+1	8.700+0	7.050+0	0.5
$3p^{3}D^{e} - 2s2p^{3}{}^{3}D^{o}$				·					
$2p3p(^{3}D_{3}^{e}) - 2s2p^{3}(^{3}D_{2}^{0})$	1343.57	*	1.14e+2	2.47e+1	1.32e+1	3.52e+0	2.02e+0	1.53e+0	1.3
$2p3p(^{3}D_{3}^{e}) - 2s2p^{3}(^{3}D_{3}^{o})$	1343.34	*	9.64e+2	2.10e+2	1.12e+2	2.98e+1	1.72e+1	1.29e+1	1.1
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}D_{1}^{o})$	1345.34	*	1.52e+2	2.40e+1	1.25e+1	3.30e+0	1.92e+0	1.52e+0	1.7
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1345.31	*	7.25e+2	1.15e+2	5.95e+1	1.58e+1	9.19e+0	7.27e+0	8.2
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}D_{3}^{o})$	1345.08	*	1.88e+2	2.98e+1	1.55e+1	4.10e+0	2.39e+0	1.89e+0	2.1
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}D_{1}^{o})$	1346.44	*	4.27e+2	6.66e+1	3.41e+1	9.00e+0	5.29e+0	4.27e+0	5.1
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1346.41	*	1.57e+2	2.45e+1	1.25e+1	3.31e+0	1.94e+0	1.57e+0	1.9
$3p^{3}D^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{1}P_{1}^{o})$	5747.30	*	7.89e+2	1.25e+2	6.47e+1	1.72e+1	9.99e+0	7.90e+0	8.9
$2p3p(^{3}D_{1}^{\overline{e}}) - 2p3s(^{1}P_{1}^{\overline{o}})$	5767.45	*	2.92e+2	4.56e+1	2.33e+1	6.16e+0	3.62e+0	2.92e+0	3.5
$3p^{1}P^{e} - 3s^{1}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	6482.05	*	1.07e+2	2.21e+1	1.16e+1	2.93e+0	1.64e+0	1.25e+0	1.3
$3p^{1}P^{e} - 3s^{3}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	6435.61	*	9.84e+2	2.03e+2	1.06e+2	2.69e+1	1.51e+1	1.15e+1	1.2
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	6379.62	*	5.74e+2	1.18e+2	6.20e+1	1.57e+1	8.81e+0	6.70e+0	7.0
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	6366.79	*	2.43e+2	5.00e+1	2.62e+1	6.64e+0	3.72e+0	2.83e+0	2.9
$3p^{1}P^{e} - 2s2p^{3}{}^{3}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{0}^{o})$	1805.47	*	4.31e+2	8.87e+1	4.66e+1	1.18e+1	6.61e+0	5.03e+0	5.2
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{2}^{o})$	1805.28	*	2.10e+3	4.32e+2	2.27e+2	5.74e+1	3.22e+1	2.45e+1	2.5
$2p3p(^{1}P_{1}^{e}) - 2s2p^{3}(^{3}P_{1}^{o})$	1805.24	*	1.28e+3	2.65e+2	1.39e+2	3.51e+1	1.97e+1	1.50e+1	1.5
$2s2p^{3}{}^{3}P^{o} - 2p^{2}{}^{1}D^{e}$									
$2s2p^3(^3P_2^o) - 2p^2(^1D_2^e)$	1064.95	*	6.57e+3	1.34e+3	7.16e+2	3.52e+2	3.24e+2	2.77e+2	2.5
$2s2p^{3}(^{3}P_{1}^{\tilde{o}}) - 2p^{2}(^{1}D_{2}^{\tilde{e}})$	1064.96	*	3.22e+3	5.57e+2	2.91e+2	1.45e+2	1.35e+2	1.16e+2	1.1
$2s2p^{3}{}^{3}P^{o} - 2p^{2}{}^{1}S^{e}$									
$2s2p^{3}(^{3}P_{1}^{o}) - 2P^{2}(^{1}S_{0}^{e})$	1306.71	*	1.38e+3	2.39e+2	1.25e+2	6.24e+1	5.78e+1	5.00e+1	4.7
$2s2p^{3}{}^{3}D^{o} - 2p^{2}{}^{1}S^{e}$									
$2s2p^{3}(^{3}D_{1}^{o}) - 2P^{2}(^{1}S_{0}^{e})$	1678.89	*	9.25e+2	1.48e+2	7.90e+1	8.67e+1	8.44e+1	7.16e+1	6.4
$2s2p^{3}{}^{3}D^{o} - 2p^{2}{}^{1}D^{e}$									
$2s2p^{3}(^{3}D_{1}^{0}) - 2p^{2}(^{1}D_{2}^{e})$	1299.79	*	1.49e+3	2.38e+2	1.27e+2	1.39e+2	1.36e+2	1.15e+2	1.0
$2s2p^{3}(^{3}D_{2}^{0}) - 2p^{2}(^{1}D_{2}^{e})$	1299.81	*	4.17e+3	7.12e+2	3.82e+2	3.83e+2	3.67e+2	3.11e+2	2.8
$2s2p^{3}(^{3}D_{2}^{\tilde{0}}) - 2p^{2}(^{1}D_{2}^{\tilde{e}})$	1300.04	*	4.61e+3	8.97e+2	4.91e+2	5.11e+2	4.92e+2	4.13e+2	3.6

Table 6. Same as Table 3 but for $N_{\rm e} = 10^5 \, {\rm cm}^{-3}$.

						$T_{\rm e}[{ m K}]$			
Transition	λ[Å]		125	500	1000	5000	10,000	15,000	20,0
6h – 5g									
$2p6h I[13/2]_{e}^{e} - 2p5g H[11/2]_{e}^{o}$	18622.57		1.03e+0	2.26e+2	1.10e+2	1.89e+1	8.14e+0	4.87e+0	3.30
$2p6h H[11/2]_{\epsilon}^{e} - 2p5g G[9/2]_{\epsilon}^{o}$	18481.01		9.82e+2	2.17e+2	1.05e+2	1.81e+1	7.79e+0	4.67e+0	3.16
$2p6h H[11/2]_{e}^{e} - 2p5g G[9/2]_{4}^{o}$	17964.67		8.16e+2	1.80e+2	8.76e+1	1.50e+1	6.47e+0	3.88e+0	2.63
$2p6h H[9/2]_{e}^{e} - 2p5g G[7/2]_{4}^{o}$	18480.67		8.02e+2	1.77e+2	8.61e+1	1.48e+1	6.36e+0	3.81e+0	2.58
$2p6h G[9/2]_4^e - 2p5g F[7/2]_2^e$	18549.42		6.38e+2	1.41e+2	6.85e+1	1.18e+1	5.06e+0	3.03e+0	2.06
$2p6h G[7/2]_{4}^{4} - 2p5g F[5/2]_{2}^{3}$	18679.36		6.59e+2	1.45e+2	7.07e+1	1.22e+1	5.23e+0	3.13e+0	2.12
$2p6h I[13/2]_{p}^{4} - 2p5g H[11/2]_{p}^{0}$	18622.64		1.20e+3	2.64e+2	1.29e+2	2.21e+1	9.51e+0	5.70e+0	3.86
$2p6h H[9/2]_{4}^{e} - 2p5g G[7/2]_{2}^{o}$	18533.26		1.81e+3	1.90e+2	8.07e+1	1.26e+1	5.41e+0	3.24e+0	2.20
$2p6h I[11/2]_{e}^{e} - 2p5g H[9/2]_{e}^{o}$	18546.53		2.75e+3	2.88e+2	1.23e+2	1.92e+1	8.22e+0	4.93e+0	3.34
$2p6h I[11/2]_{5}^{e} - 2p5g H[9/2]_{4}^{o}$	19170.43		2.29e+3	2.39e+2	1.02e+2	1.59e+1	6.83e+0	4.09e+0	2.77
$2p6h H[9/2]_5^e - 2p5g G[7/2]_4^{o7}$	18533.26		2.28e+3	2.38e+2	1.01e+2	1.59e+1	6.80e+0	4.08e+0	2.76
6g – 5f									
$2p6g G[9/2]_4^o - 2p5f F[7/2]_3^e$	17930.73		4.66e+2	5.40e+1	2.50e+1	5.05e+0	2.43e+0	1.55e+0	1.13
$2p6g G[9/2]_5^{\circ} - 2p5f F[7/2]_4^{\circ}$	18277.37		5.79e+2	6.71e+1	3.10e+1	6.28e+0	3.02e+0	1.93e+0	1.40
$2p6g F[7/2]_3^{\circ} - 2p5f D[5/2]_2^{\circ}$	18230.35		3.41e+2	3.95e+1	1.83e+1	3.70e+0	1.78e+0	1.14e+0	8.21
$2p6g F[7/2]_4^6 - 2p5f D[5/2]_3^{\tilde{e}}$	18222.01		4.49e+2	5.20e+1	2.40e+1	4.87e+0	2.34e+0	1.50e+0	1.13
6g – 4f									
$2p6gG[9/2]_4^6 - 2p4fF[7/2]_3^6$	6413.23		4.34e+2	5.03e+1	2.32e+1	4.71e+0	2.26e+0	1.45e+0	1.05
$2p6gG[9/2]_{5}^{0} - 2p4fG[7/2]_{4}^{e}$	6556.32		2.66e+2	3.08e+1	1.42e+1	2.88e+0	1.39e+0	8.86e-1	6.44
$2p6gG[9/2]_5^6 - 2p4fF[7/2]_4^6$	6456.97		5.55e+2	6.43e+1	2.9/e+1	6.02e+0	2.90e+0	1.85e+0	1.35
$2p6g F[7/2]_3^0 - 2p4f D[5/2]_2^e$	6446.53		3.80e+2	4.41e+1	2.04e+1	4.13e+0	1.99e+0	1.27e+0	9.16
$2p6g F[7/2]_4^6 - 2p4f D[5/2]_3^6$	6445.34		5.04e+2	5.84e+1	2.70e+1	5.4 ⁻ /e+0	2.63e+0	1.69e+0	1.27
6f - 3d	2504 10		2120+2	2.06 ± 1	1 280 1	2.24 + 0	1.820+0	1.270+0	1.0/
$2poi F[7/2]_4 - 2poi(F_3)$	2500.67	*	3.130+2	2.900 ± 1	1.500+1	3.340 ± 0	1.820 ± 0	1.276+0	1.04
$2poi F[7/2]_{3}^{2} - 2poi(F_{2}^{2})$	2500.67	*	3.62e+2	3.43e+1	1.59e+1	3.80e+0	2.06e+0	1.44e+0	1.10
$2poi F[5/2]_2^2 - 2p3d(^3D_1^2)$	2560.24	*	2.37e+2	2.25e+1	1.05e+1	2.55e+0	1.40e+0	9./1e-1	1.14
$2p6f F[5/2]_3^c - 2p3d(^3D_2^o)$	2561.95	*	2.20e+2	2.08e+1	9.69e+0	2.34e+0	1.28e+0	8.96e-1	7.78
6d - 3p $2p6d(^{3}F^{0}) - 2p3p(^{3}D^{e})$	1680 27		1 85e+2	2 03e+1	1.02e+1	3 14e+0	1 98e±0	1 73e+0	2.80
$2pod(1_3) = 2pop(D_2)$	1000.27		1.050+2	2.030+1	1.020+1	5.140+0	1.900+0	1.750+0	2.00
5g - 4f 2p5g $F[5/2]^{\circ} - 2p4f D[3/2]^{\circ}$	10108 45	*	8 51e+2	1 94e+2	9 73e±1	1 85e±1	8 37e+0	5 15e±0	3 58
$2p_{3}g_{1}[5/2]_{3} = 2p_{4}D[5/2]_{2}$ $2p_{5}g_{1}H[11/2]^{\circ} = 2p_{4}f_{5}G[9/2]^{\circ}$	10023 27	*	1.91e+3	4.30e+2	2.14e+2	4.04e+1	1.83e+1	1.12e+1	7 7
$2p5gH[11/2]_6 = 2p410[9/2]_5$ $2p5gH[11/2]^0 = 2p4fG[9/2]^0$	10025.27	~ ~	1.510+3	3.440+2	1.730+2	3.200 ± 1	1.050+1	0.15e+0	6.34
$2p5g \Pi [11/2]_5 - 2p41 O[9/2]_4$	0041.81	*	2.04o+2	3.440 ± 2	1.750 ± 2	5.290+1	1.490 ± 1	1.820+0	1.22
$2p3gG[9/2]_4 - 2p4IG[7/2]_3$ $2p5gG[9/2]^0 - 2p4IG[7/2]^0$	9941.01	*	2.040+2	2.090+1	1.180+2	0.360+0	2.900 ± 0	1.65e+0	3.0/
$2p5gG[7/2]_4 = 2p41F[7/2]_3$ $2p5gG[7/2]^0 = 2p4fF[5/2]^0$	10070 12	~ 	7.030+2	1.600 ± 2	8.030 ± 1	1.530 ± 1	6.020+0	4.260 ± 0	2.04
$2p5g O[7/2]_3 - 2p41 P[5/2]_2$ $2p5g H[0/2]^0 - 2p4f C[7/2]^0$	0060 33	*	1.05e+2	1.000 ± 2	1.210+2	1.550 ± 1	1.04e+1	4.200 ± 0	2.9. A 45
$2p5g ff[9/2]_5 = 2p41 O[7/2]_4$ $2p5g G[7/2]^0 = 2p4f F[5/2]^0$	10085 72	*	0.55e+2	2.420 ± 2	1.210 ± 2	2.310 ± 1	0.400 ± 0	5.79e+0	4.4.
$2p5gG[7/2]_4 - 2p41F[5/2]_3$ $2p5gG[0/2]^9 - 2p4fG[7/2]^9$	10126.15	*	9.336+2	2.100+2	1.090+2	2.060 ± 1	9.400 ± 0	3.790+0	4.01
$2p5gG[9/2]_5 - 2p4IG[7/2]_4$	0801.10	*	1.030+3	1.110+2	4.000 ± 1	2.400 ± 0	3.760 ± 0	2.330 ± 0	1.02
$2p_{5g}G[9/2]_{5} = 2p_{41}F[7/2]_{4}$	9691.10	*	3.130+3	3.410+2	1.490+2	2.360 ± 1	1.10e+1	7.17e+0	4.95
$2p_{3}g_{1}[7/2]_{4}^{2} - 2p_{4}G_{1}[7/2]_{3}^{2}$	10110.33	*	0.700+2	1.700+2	7.730+1	1.090+1	0.3/0+0	J.200+0	2.00
$2\mu g r [1/2]_3^2 - 2p41 D[5/2]_2^2$	7808.20 10250-10	*	2.100+3	2.2/e+2	9.900 ± 1	1.720+1	1.60a+0	4.78e+0	3.53
$2p5g F[7/2]_4^\circ - 2p4f F[5/2]_5^\circ$ $2p5g F[7/2]_4^\circ - 2p4f D[5/2]_3^\circ$	9865.42	*	4.59e+2 2.78e+3	4.96e+1 3.01e+2	1.32e+2	2.28e+0	1.03e+0 1.03e+1	6.34e+0	4.40
5f - 4d									
$2p5f F[7/2]_{4}^{e} - 2p4d(^{3}D_{2}^{o})$	9281.06	*	3.96e+2	4.18e+1	1.98e+1	4.58e+0	2.41e+0	1.65e+0	1.32
$2p5f F[7/2]_{e}^{4} - 2p4d({}^{3}F_{e}^{5})$	8772.93	*	2.92e+2	3.07e+1	1.44e+1	3.31e+0	1.74e+0	1.18e+0	9.54
$2p5f F[5/2]_{e}^{e} - 2p4d(^{3}D^{0})$	9242.02	*	3.12e+2	3.28e+1	1.55e+1	3.61e+0	1.90e+0	1.30e+0	1.03
$2p5f F[5/2]_3^e - 2p4d(^1D_2^o)$	8983.28	*	2.98e+2	3.14e+1	1.48e+1	3.42e+0	1.80e+0	1.23e+0	1.02
5f - 3d									
$2p5fG[9/2]_{5}^{e} - 2p3d(^{3}F_{4}^{o})$	2885.27	*	6.18e+2	1.49e+2	8.07e+1	2.07e+1	1.10e+1	7.50e+0	5.80
$2p5f D[5/2]_2^{e} - 2p3d(^{3}P_2^{o})$	3082.20	*	3.13e+2	6.57e+1	3.47e+1	8.67e+0	4.57e+0	3.08e+0	2.33
$2p5fG[7/2]_{4}^{2} - 2p3d(^{3}F_{0}^{2})$	2884.25	*	2.19e+2	4.58e+1	2.42e+1	6.09e+0	3.22e+0	2.19e+0	1.70
$2p5fG[7/2]^{\circ}_{\circ} - 2p3d(^{3}F^{\circ})$	2879.75	*	2.26e+2	4.75e+1	2.51e+1	6.31e+0	3.33e+0	2.26e+0	1.77
$2n5f F[7/2]^{e} = 2n3d(^{3}D^{o})$	2976 97	*	8.19e+2	8.65e+1	4.09e+1	9.47e+0	4.99e+0	3.40e+0	2 7
$2pSt (17/2)_4 = 2pSt (15_3)$ $2pSt C (7/2)^6 = 2pSt (15_3)$	2970.97	۰۳ ت	5 030+2	5 31a+1	7.000 ± 1	5.810+0	3 06010	2 00a+0	1.6
$2p_{31} O[7/2]_4 = 2p_{30}(F_3)$	2011.30	*	2 70 2	2.072 + 1	2.310+1 1.07a · 1	1 20a + 0	2.000+0	2.090+0 1.52a+0	1.0
$2p_{51} F[1/2]_{5}^{2} - 2p_{50}(^{\circ}D_{2}^{\circ})$	2942.23	*	5.78e+2	5.9/e+1	1.0/e+1	4.290+0	2.25e+0	1.550+0	1.24
$2p_{5}f_{6}f_{1}/2f_{3}^{2} - 2p_{5}d(^{3}F_{2}^{6})$	2892.87	*	5.9/e+2	6.2/e+1	2.94e+1	6.//e+0	5.54e+0	2.42e+0	1.95
$2pst F[5/2]_{2}^{c} - 2p3d(^{5}D_{1}^{o})$	2973.60	*	6.01e+2	6.33e+1	2.99e+1	6.95e+0	3.6/e+0	2.50e+0	1.99
$2p5f F[5/2]_{3}^{e} - 2p3d(^{3}D_{2}^{o})$	2975.95	*	5.64e+2	5.94e+1	2.80e+1	6.47e+0	3.40e+0	2.33e+0	1.94

						$T_{\rm e}[{ m K}]$			
Transition	/[Å]		125	500	1000	5000	10,000	15,000	20,000
$2p5f F[5/2]_3^e - 2p3d(^1D_2^o)$	2943.51	*	3.77e+2	3.97e+1	1.87e+1	4.32e+0	2.27e+0	1.56e+0	1.30e+0
5d - 3p	1959 42		4.91-1.2	5 07- 1	2 (9- 1	0 12 - 10	5 05 - 10	4.25 - + 0	(22- + 0
$2p3d({}^{2}F_{3}^{*}) - 2p3p({}^{2}D_{2}^{*})$	1858.42		4.81e+2	5.2/e+1	2.080+1	8.130+0	5.05e+0	4.25e+0	0.23e+0
$4f - 3d^{1}P^{0}$ 2p4f $D[5/2]_{2}^{e} - 2p3d(^{1}P^{0})$	4694.64	*	6.56e+2	1.25e+2	6.23e+1	1.30e+1	6.28e+0	4.03e+0	2.91e+0
$2p4f D[5/2]_{2}^{e} - 2p3d(^{3}P_{1}^{o})$	4442.01	*	5.48e+2	1.04e+2	5.21e+1	1.09e+1	5.25e+0	3.37e+0	2.44e+0
$2p4f D[5/2]_3^{\tilde{e}} - 2p3d(^3P_2^{\tilde{o}})$	4432.74	*	1.95e+3	3.70e+2	1.85e+2	3.86e+1	1.87e+1	1.20e+1	8.81e+0
$4f - 3d^3D^o$									
$2p4f D[5/2]_3^c - 2p3d(^3D_3^c)$ $2p4f E[7/2]_3^c - 2p3d(^3D_3^c)$	4179.67	*	4.58e+2	8.71e+1	4.35e+1	9.08e+0	4.39e+0	2.83e+0	2.07e+0
$2p41 F[7/2]_4 - 2p30(D_3)$ $2p4f F[7/2]^e - 2p3d(^3D^0)$	4199.98	*	$232e\pm2$	7.410±1 3.08e±1	1.04c+1	7.34c+0 4.04e±0	1.05e±0	2.360 ± 0 1 27e±0	0.70e_1
$2p + 1 F[7/2]_3 = 2p + 3d(^3D_2)$ $2p + 4f F[7/2]_6 = 2p + 3d(^3D_2)$	4241.79	*	4.54e+3	5.960+1 5.46e+2	2.54e+2	5.10e+1	2.48e+1	1.270+0 1.61e+1	1.23e+1
$2p4f F[7/2]_{4}^{e} - 2p3d(^{3}D_{2}^{o})$	4242.50	*	2.27e+2	2.72e+1	1.26e+1	2.52e+0	1.22e+0	7.93e-1	6.08e - 1
$2p4f F[7/2]_{e}^{e} - 2p3d(^{3}D_{e}^{o})$	4237.05	*	1.09e+3	1.30e+2	6.03e+1	1.20e+1	5.82e+0	3.79e+0	2.90e+0
$2p4f F[5/2]_{2}^{2} - 2p3d(^{3}D_{1}^{2})$	4236.93	*	2.72e+3	3.10e+2	1.42e+2	2.82e+1	1.37e+1	8.94e+0	6.85e+0
$2p4f F[5/2]_3^{e} - 2p3d(^3D_2^{0})$	4241.76	*	2.62e+3	2.99e+2	1.37e+2	2.71e+1	1.31e+1	8.56e+0	6.69e+0
$4f - 3d {}^1F^o$									
$2p4fG[9/2]_4^e - 2p3d(^1F_3^o)$	4530.41	*	1.64e+3	3.79e+2	1.95e+2	4.16e+1	2.01e+1	1.31e+1	9.92e+0
$2p4f G[7/2]_4^e - 2p3d({}^1F_3^o)$	4552.52	*	9.81e+2	1.67e+2	8.22e+1	1.70e+1	8.25e+0	5.37e+0	4.10e+0
$2p4f F[5/2]_3^e - 2p3d({}^1F_3^o)$	4608.09	*	2.74e+2	3.12e+1	1.43e+1	2.83e+0	1.37e+0	8.94e-1	6.98e-1
$4f - 3d^3F^0$	4011.00		0.00	5 20 1	2.50 1	5.01 0	0.06	1.02 0	1.01 0
$2p4f D[3/2]_{2}^{2} - 2p3d(^{3}F_{3}^{0})$	4011.82	*	2.32e+0	5.39e-1	2.78e-1	5.91e-2	2.86e-2	1.83e-2	1.31e-2
$2p4I D[3/2]_{2}^{2} - 2p3d(^{3}F_{2}^{0})$	4002.28	*	1.09e-1	2.53e-2	1.30e-2	2.//e=3	1.34e-3	8.58e-4	0.15e - 4
$2p41 D[5/2]_1^2 - 2p3d(^2F_2^2)$ $2p4f D[5/2]_1^e - 2p3d(^3F_2^0)$	4002.87	*	5.030 ± 0	1.25o+0	5.00e - 1	1.62e-2	5.790-2	2.45e-2	2 150 2
$2p41 D[5/2]_2 - 2p3d(\Gamma_3)$ $2p4f D[5/2]^e - 2p3d(^3F^0)$	4023.95	*	$7.08e \pm 0$ 7.08e ± 1	1.35e+0 1.35e-1	0.72e - 1 6 73e - 2	1.40e - 1 1.40e - 2	0.76e - 2 6 78e - 3	4.30e-2	3.15e-2
$2p + 1 D[5/2]_2 = 2p - 3d(1_2)$ $2p - 4f D[5/2]_e = 2p - 3d(^3F^e)$	4037.96	*	1.69e+1	3.22e+0	1.61e+0	3 36e-1	1.62e-1	1.05e - 1	7.66e-2
$2pHD[5/2]_3 = 2p3d(^3F_4)$ $2p4fD[5/2]_e = 2p3d(^3F_2)$	4024.71	*	4.19e - 1	7.96e-2	3.98e-2	8.30e-3	4.02e-3	2.59e-3	1.89e-3
$2p4f D[5/2]_{2}^{\circ} - 2p3d(^{3}F_{2}^{\circ})$	4015.11	*	1.31e-2	2.49e-3	1.25e-3	2.60e-4	1.26e-4	8.11e-5	5.94e-5
$2p4fG[9/2]_{4}^{e} - 2p3d({}^{3}F_{4}^{o})$	4039.34	*	4.81e+1	1.11e+1	5.72e+0	1.22e+0	5.90e-1	3.83e-1	2.91e-1
$2p4fG[9/2]_{4}^{4} - 2p3d(^{3}F_{3}^{6})$	4026.08	*	7.69e+2	1.78e+2	9.14e+1	1.95e+1	9.43e+0	6.12e+0	4.65e+0
$2p4f G[9/2]_{5}^{e} - 2p3d({}^{3}F_{4}^{o})$	4041.31	*	3.13e+3	7.21e+2	3.70e+2	7.89e+1	3.84e+1	2.50e+1	1.87e+1
$2p4f G[7/2]_4^{e} - 2p3d(^3F_4^{o})$	4056.91	*	3.41e+2	5.82e+1	2.86e+1	5.91e+0	2.87e+0	1.87e+0	1.43e+0
$2p4f G[7/2]_4^e - 2p3d(^3F_3^o)$	4043.53	*	1.94e+3	3.31e+2	1.63e+2	3.37e+1	1.63e+1	1.06e+1	8.11e+0
$2p4fG[7/2]_3^e - 2p3d({}^3F_4^o)$	4058.16	*	8.58e+0	1.47e+0	7.21e-1	1.49e-1	7.20e-2	4.69e-2	3.58e-2
$2p4f G[7/2]_3^e - 2p3d({}^3F_3^o)$	4044.78	*	3.11e+2	5.32e+1	2.61e+1	5.39e+0	2.61e+0	1.70e+0	1.30e+0
$2p4f G[7/2]_{3}^{c} - 2p3d(^{3}F_{2}^{o})$	4035.08	*	2.06e+3	3.53e+2	1.74e+2	3.58e+1	1.73e+1	1.13e+1	8.61e+0
$2p4f F[7/2]_{4}^{2} - 2p3d(^{3}F_{4}^{2})$	4095.90	*	3.48e+2	4.19e+1	1.95e+1	3.91e+0	1.90e+0	1.24e+0	9.40e - 1
$2p41 F[7/2]_4 - 2p3d(^3F_3)$ $2p4f F[7/2]^e - 2p3d(^3F_3)$	4082.27	*	0.050+2	1.04e+2	4.030 ± 1 7.210 1	9.090+0 1 44 e -1	4.700 ± 0	5.070+0	2.550 ± 0 3.480-2
$2p4fF[7/2]_3 = 2p3d(T_4)$ $2p4fF[7/2]^e = 2p3d(^3F^0)$	4090.37	*	1.300±1 5.12e±1	1.330∓0 6.12e±0	7.21c−1 2.84e±0	1.44C-1 5.67e-1	$2.74e_{-1}$	4.346-2 1 70e-1	$1.37e_{-1}$
$2p41F[7/2]_3 = 2p3d(T_3)$ $2p4fF[7/2]^e = 2p3d(^3F^e)$	4073.05	*	1.00e+3	0.12c+0 1.20e+2	2.040+0	1.11e+1	5.37e+0	3.50e+0	2.68e+0
$2p4f F[5/2]_{2}^{\circ} - 2p3d(^{3}F_{2}^{\circ})$	4086.83	*	3.40e+1	3.87e+0	1.78e+0	3.52e-1	1.71e-1	1.12e - 1	8.54e-2
$2p4f F[5/2]_{2}^{2} - 2p3d(^{3}F_{2}^{0})$	4076.93	*	3.26e+2	3.72e+1	1.71e+1	3.39e+0	1.64e+0	1.07e+0	8.21e-1
$2p4f F[5/2]_{2}^{2} - 2p3d(^{3}F_{4}^{0})$	4100.97	*	1.19e+1	1.36e+0	6.21e-1	1.23e-1	5.94e-2	3.88e-2	3.03e-2
$2p4f F[5/2]_3^{e} - 2p3d(^3F_3^{o})$	4087.31	*	2.32e+2	2.65e+1	1.21e+1	2.40e+0	1.16e+0	7.58e-1	5.92e-1
$2p4f F[5/2]_3^e - 2p3d({}^3F_2^o)$	4077.40	*	4.31e-1	4.91e-2	2.25e-2	4.45e-3	2.15e-3	1.41e-3	1.10e-3
$4f-3d\ ^1D^o$									
$2p4f F[7/2]_3^e - 2p3d(^1D_2^o)$	4171.60	*	2.08e+3	2.49e+2	1.16e+2	2.31e+1	1.12e+1	7.28e+0	5.57e+0
$2p4f F[5/2]_2^e - 2p3d(^1D_2^o)$	4175.66	*	4.00e+2	4.56e+1	2.09e+1	4.15e+0	2.01e+0	1.31e+0	1.01e+0
$2p4f F[5/2]_3^e - 2p3d(^1D_2^{\overline{0}})$	4176.16	*	1.68e+3	1.91e+2	8.77e+1	1.73e+1	8.39e+0	5.48e+0	4.28e+0
4d - 4p	12050 50		1.57	2.52 . 1	1.02 . 1	571 .0	2.27 . 0	2.40	2.21 . 0
$2p4d(^{3}P_{1}^{0}) - 2p4p(^{3}S_{1}^{0})$	13858.59	*	1.5/e+2	3.53e+1	1.93e+1	5./1e+0	3.3/e+0	2.49e+0	2.21e+0
$2p4a(^{2}P_{2}^{2}) - 2p4p(^{3}S_{1}^{2})$ $2p4d(^{3}P_{2}^{0}) - 2p4p(^{3}S_{1}^{0})$	1394/.86	*	2.34e+2	4./2e+1	2.53e+1	1.29e+0	4.30e+0	5.43e+0	4.62e+0
$2p4u(P_2) - 2p4p(P_2)$ $2p4d(^3D^2) - 2p4p(^3P_2)$	13423.83	*	1.20e+2	2.430+1	1.30e+1 3.45e+1	3.730+0	2.210+0	1./00+U	2.38e+U
$2p+d(D_3) = 2p+p(P_2)$ $2p4d(^3D^0) = 2p4p(^3D^0)$	14173.22	*	5.040+2 1.82≏±2	0.550+1 3 11o+1	J.4JC+1 1.6/⊕±1	2.22C+U 4.72o±0	2.000+0 2.78a+0	+.390+0 2 00a±0	4.550+0 2.07e+0
$2p4u(^{-}D_{3}) - 2p4p(^{-}D_{3})$	13430.01	*	1.02e+2	5.11e+1	1.04e+1	4.72e+0	2.780+0	∠.09e+0	2.07e+0

	<i>T</i> e[K]								
Transition	λ[Å]		125	500	1000	5000	10,000	15,000	20,000
$2n4d(^{3}D_{e}^{0}) - 2n4n(^{1}P_{e}^{e})$	12349.30	*	3.19e+2	481e+1	2.47e+1	6 88e+0	4 05e+0	3.37e+0	5 44e+0
$2p4d(^{3}D^{o}) - 2p4p(^{1}P^{e})$	12389.41	*	2.16e+2	2.32e+1	1.15e+1	3.18e+0	1.88e+0	1.47e+0	1.81e+0
$2p4d(^{3}F^{0}) - 2p4p(^{3}D^{e})$	14358.63	*	5.94e+2	1.46e+2	8 13e+1	2 50e+1	1 50e+1	1 12e+1	9.27e+0
$2p Hd(^{3}F^{o}) = 2p 4p(^{3}D^{e})$	14337 71	*	9.53e+2	1.13e+2	5.79e+1	1.67e+1	1.00e+1	8.03e+0	1.04e+1
$2p+d(^{3}F^{0}) - 2p+p(^{3}D^{e})$	14364.86	~ *	3.45e±2	1.15C+2 3.01e±1	1.02e±1	5.28e±0	1.00C+1 3.1/e±0	0.05C+0 2.64e±0	1.0 + c + 1 4.21 + 0
$2p+d(1_2) - 2p+p(D_1)$	14504.80	Ŧ	5.450+2	5.910+1	1.920+1	5.200+0	5.140+0	2.040+0	4.210+0
4d - 3p $2p4d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	2496 81	*	1.71e+2	3.46e+1	1.85e+1	5.34e+0	3.15e+0	2.51e+0	3.38e+0
$2p4d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{2}^{0})$	2522.24	*	6.50e+2	1.11e+2	5.84e + 1	1.68e+1	9.92e+0	7.44e+0	7.36e+0
$2p4d(^{3}D^{0}) - 2p3p(^{3}S^{e})$	2416.25	*	3.91e+2	5.88e+1	3.02e+1	8 42e+0	4.95e+0	4 13e+0	6.65e+0
$2p^{1}d(^{3}D^{0}) - 2p^{3}p(^{3}P^{e})$	2520.21	*	3.27e+2	3.51e+1	1 74e+1	4.82e+0	2.84e+0	2.22e+0	2.75e+0
$2p Ad(^{3}D^{0}) - 2p Sp(^{1}D^{0})$	2417 78	*	2.27e+2	2.43e+1	1.7 le + 1 1.20 e + 1	3.33e+0	1.97e+0	1.54e+0	1.90e+0
$2p/d(^{3}F^{0}) - 2p3p(^{3}D^{e})$	2317.04	•	5.71e+2	1.40e±2	7.81e+1	2.40e+1	1.57e+0	1.08e±1	8.91e±0
$2p+d(^{3}F^{0}) - 2p3p(^{3}D^{e})$	2316.49	*	8.97e+2	1.400+2 1.06e+2	5.45e+1	1.58e+1	9.43e+0	7.55e+0	9.82e+0
$2p Hd(^{3}F^{0}) = 2p 3p(^{3}D^{e})$	2316.68	*	3.40e+2	3.85e+1	1.89e+1	5.20e+0	3.09e+0	2.60e+0	4.15e+0
$2p+u(1_2) - 2p+p(D_1)$	2510.00		5.40012	5.650 11	1.09011	5.20010	5.00010	2.00010	4.15010
4p - 3d $2p4p(^{3}S^{e}) - 2p3d(^{3}P^{o})$	6809 98	*	1 15e+2	2 48e+1	1 36e+1	4 17e+0	2 59e+0	2.06e+0	2 23e+0
$2p \cdot p(S_1) - 2p \cdot d(S_2)$ $2p \cdot 4p(^3D^e) - 2p \cdot 3d(^3F^o)$	6167.75	*	3.91e+2	2.100+1 8.77e+1	4 89e+1	1.58e+1	9.99e+0	7.81e+0	7.08e+0
$2p4p(^{3}D^{e}) - 2p3d(^{3}F^{0})$	6173 31	-1- 	5.05e±2	6.01e±1	4.000+1 3.00e±1	0.40e±0	6.03e±0	/ 98e±0	6.08e±0
$2p4p(^{3}D_{2}^{e}) - 2p3d(^{3}F_{2}^{o})$	6170.16	*	2.030 ± 2	2.010 ± 1	5.090±1 1.44e±1	9.490±0	0.05e+0 2.86e±0	2.700 ± 0	$3.12e\pm0$
$2pqp(D_1) = 2p3u(T_2)$	0170.10	Ŧ	2.510+2	2.000+1	1.440+1	4.400+0	2.000+0	2.420+0	5.120+0
$4p^{3}D^{e} - 3s^{3}P^{o}$									
$2p4p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	1859.26	*	3.82e+2	8.57e+1	4.78e+1	1.54e+1	9.76e+0	7.63e+0	6.91e+0
$2p4p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	1857.87	*	3.42e+2	4.07e+1	2.09e+1	6.42e+0	4.08e+0	3.37e+0	4.11e+0
$2p4p(^{3}D_{1}^{\tilde{e}}) - 2p3s(^{3}P_{0}^{o})$	1858.55	*	1.39e+2	1.59e+1	7.98e+0	2.43e+0	1.58e+0	1.34e+0	1.72e+0
$4p^{3}D^{e} - 4s^{3}P^{o}$									
$2p4p(^{3}D_{3}^{e}) - 2p4s(^{3}P_{2}^{o})$	16256.20	*	1.34e+2	3.00e+1	1.67e+1	5.38e+0	3.41e+0	2.67e+0	2.42e+0
$4s^{3}P^{0} - 3p^{3}D^{e}$									
$2p4s(^{3}P_{2}^{0}) - 2p3p(^{3}D_{3}^{e})$	3328.72	*	1.34e+2	2.87e+1	1.60e+1	5.62e+0	3.87e+0	3.28e+0	3.35e+0
$3d^{3}P^{0} - 3p^{1}P^{e}$	4100.50		4 22 2	1.02.0	5 20 1	1.24 . 1	7.10 . 0	5.02 .0	4.00 .0
$2p3d(^{3}P_{0}^{3}) - 2p3p(^{4}P_{1}^{2})$	4109.59	*	4.32e+2	1.02e+2	5.39e+1	1.34e+1	7.19e+0	5.03e+0	4.09e+0
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{4}P_{1}^{0})$	4114.33	*	1.56e+3	3.33e+2	1.74e+2	4.25e+1	2.28e+1	1.61e+1	1.39e+1
$2p3d(^{3}P_{2}^{0}) - 2p3p(^{4}P_{1}^{e})$	4123.12	*	3.11e+3	5.91e+2	3.03e+2	7.28e+1	3.90e+1	2.90e+1	3.41e+1
$3d^{3}P^{0} - 3p^{3}P^{e}$ (V29)									
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}P_{1}^{0})$	5454.21	*	1.89e-4	4.43e-5	2.35e-5	5.83e-6	3.13e-6	2.19e-6	1.78e-6
$2p3d({}^{3}P_{1}^{o}) - 2p3p({}^{3}P_{2}^{e})$	5480.05	*	1.56e+2	3.34e+1	1.75e+1	4.27e+0	2.29e+0	1.61e+0	1.39e+0
$2p3d({}^{3}P_{1}^{0}) - 2p3p({}^{3}P_{1}^{e})$	5462.58	*	7.43e-1	1.59e-1	8.30e-2	2.03e-2	1.09e-2	7.66e-3	6.63e-3
$2p3d({}^{3}P_{1}^{o}) - 2p3p({}^{3}P_{0}^{e})$	5452.07	*	1.06e+2	2.27e+1	1.19e+1	2.90e+0	1.56e+0	1.10e+0	9.47e-1
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5495.65	*	5.57e+2	1.06e+2	5.43e+1	1.31e+1	7.00e+0	5.19e+0	6.12e+0
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{1}^{e})$	5478.09	*	4.27e-1	8.11e-2	4.16e-2	9.99e-3	5.36e-3	3.98e-3	4.69e-3
$3d^{3}P^{0} - 3p^{3}S^{e}$	1005 00		1 40 0	o 45 - 4				1 50 0	
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}S_{1}^{e})$	4987.38	*	1.48e+2	3.47e+1	1.84e+1	4.57e+0	2.46e+0	1.72e+0	1.40e+0
$2p3d({}^{3}P_{1}^{o}) - 2p3p({}^{3}S_{1}^{e})$	4994.37	*	1.58e+2	3.37e+1	1.76e+1	4.31e+0	2.31e+0	1.63e+0	1.41e+0
$2p3d(^{3}P_{2}^{0}) - 2p3p(^{3}S_{1}^{e})$	5007.33	*	1.43e+2	2.71e+1	1.39e+1	3.34e+0	1.79e+0	1.33e+0	1.57e+0
$3d^{3}P^{0} - 3p^{3}D^{e}$			1.00	0.50	104 4	1.10	0.05	1.76	0.07
$2p3d({}^{3}P_{2}^{0}) - 2p3p({}^{3}D_{3}^{e})$	4507.56	*	1.89e+2	3.59e+1	1.84e+1	4.42e+0	2.37e+0	1.76e+0	2.07e+0
$3d^{3}D^{o} - 3p^{3}P^{e}$ (V28)									
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}P_{2}^{e})$	5941.65	*	5.21e+3	7.38e+2	3.63e+2	8.54e+1	4.57e+1	3.26e+1	2.99e+1
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{2}^{e})$	5952.39	*	1.73e-2	2.32e-3	1.13e-3	2.62e-4	1.40e-4	1.03e-4	1.11e-4
$2p3d({}^{3}D_{2}^{o}) - 2p3p({}^{3}P_{1}^{e})$	5931.78	*	1.02e+2	1.37e+1	6.67e+0	1.55e+0	8.30e-1	6.09e-1	6.57e-1
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{2}^{e})$	5960.90	*	6.37e+1	7.33e+0	3.49e+0	8.03e-1	4.29e-1	3.11e-1	3.20e-1
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}P_{1}^{\bar{e}})$	5940.24	*	3.12e+0	3.59e-1	1.71e-1	3.93e-2	2.10e-2	1.52e-2	1.57e-2
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}P_{0}^{e})$	5927.81	*	1.56e+3	1.79e+2	8.53e+1	1.96e+1	1.05e+1	7.61e+0	7.83e+0
$3d^{3}D^{o} - 3p^{3}D^{e}$ (V20)									
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{3}^{e})$	4803.29	*	3.02e+3	4.28e+2	2.11e+2	4.95e+1	2.65e+1	1.89e+1	1.74e+1
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{2}^{e})$	4781.19	*	1.92e+2	2.72e+1	1.34e+1	3.15e+0	1.69e+0	1.20e+0	1.11e+0
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{2}^{e})$	4810.30	*	2.00e-3	2.68e-4	1.31e-4	3.03e-5	1.62e-5	1.19e-5	1.29e-5

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,000
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4788.14	*	1.70e-2	2.28e-3	1.11e-3	2.57e-4	1.38e-4	1.01e-4	1.09e-4
$2p3d(^{3}D_{e}^{2}) - 2p3p(^{3}D_{e}^{2})$	4774.24	*	3.79e+0	5.08e-1	2.47e-1	5.74e-2	3.07e-2	2.25e-2	2.43e-2
$2p3d(^{3}D^{0}) - 2p3p(^{3}D^{e})$	4793.65	*	3 80e+2	4 37e+1	2.08e+1	4.79e+0	2 56e+0	1.86e+0	1.91e+0
$2p3d(^{3}D_{1}) - 2p3p(^{3}D_{2})$ $2p3d(^{3}D_{2}) - 2p3p(^{3}D_{2})$	4779.72	*	1.23e+3	1.41e+2	6.71e+1	1.54e+1	8.24e+0	5.98e+0	6.15e+0
$3d^{9}D^{9} - 3p^{9}S^{e}$ $2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}S_{1}^{e})$	5390.69	*	1.46e+3	1.68e+2	7.98e+1	1.84e+1	9.81e+0	7.12e+0	7.33e+0
$3d^{1}D^{0} - 3n^{3}P^{e}$									
$2p3d(^{1}D_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	6086.54	*	7.99e+2	9.63e+1	4.64e+1	1.08e+1	5.74e+0	4.30e+0	5.25e+0
$3d^{1}D^{o} - 3p^{3}S^{e}$									
$2p3d(^{1}D_{2}^{o}) - 2p3p(^{3}S_{1}^{e})$	5493.23	*	3.64e+3	4.39e+2	2.11e+2	4.90e+1	2.61e+1	1.96e+1	2.39e+1
$3d^{1}D^{o} - 3p^{3}D^{e}$									
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}D_{3}^{e})$	4897.54	*	3.09e+2	3.72e+1	1.79e+1	4.16e+0	2.22e+0	1.66e+0	2.03e+0
$2p3d(^{1}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4874.57	*	1.63e+3	1.96e+2	9.45e+1	2.19e+1	1.17e+1	8.75e+0	1.07e+1
$2p3d(^{1}D_{2}^{\ddot{o}}) - 2p3p(^{3}D_{1}^{\ddot{e}})$	4860.17	*	2.06e+2	2.49e+1	1.20e+1	2.78e+0	1.48e+0	1.11e+0	1.36e+0
$3d^{3}F^{o} - 3p^{3}D^{e}$ (V19)									
$2n3d(^{3}F^{0}) - 2n3n(^{3}D^{e})$	5005.15	*	6 59e+3	1.48e+3	7.85e+2	1.99e+2	1.09e+2	7.74e+1	641e+1
$2p3d(^{3}F^{0}) - 2p3p(^{3}D^{e})$	5025.66	*	8 10e+2	1 16e+2	5.85e+1	1.43e+1	7 76e+0	5 76e+0	6 29e+0
$2p3d(^{3}F^{0}) = 2p3p(^{3}D^{e})$	5001.47	*	7.97e+3	1.15e+3	5.050+1 5.76e+2	1.150+1 1.40e+2	7.64e+1	5.700+0	6.19e+1
$2p3d(^{3}F^{0}) = 2p3p(^{3}D^{e})$	5040.71	т 4	1.970+3	2.62 ± 0	1.280 ± 0	3.03e - 1	1.64e - 1	1.26e - 1	$1.61e^{-1}$
$2p3u(r_2) - 2p3p(D_3)$	5040.71	*	1.960+1	2.020+0	1.280+0	3.03e-1	1.04e-1	1.200-1	1.01e-1
$2p3d(^{3}F_{2}^{3}) - 2p3p(^{3}D_{2}^{3})$	5016.38	*	8.51e+2	1.13e+2	5.50e+1	1.30e+1	7.07e+0	5.41e+0	6.92e+0
$2p3d(^{3}F_{2}^{3}) - 2p3p(^{3}D_{1}^{2})$	5001.13	*	5.16e+3	6.83e+2	3.33e+2	7.90e+1	4.28e+1	3.28e+1	4.20e+1
$3p^{1}S^{e} - 3s^{1}P^{0}$	2427 14		1 45 - 1 2	2 22 - 1	1 77- 1	5 97- 0	4.00-+0	2 47- 10	2 5 2 - + 0
$2p3p(^{1}S_{0}^{2}) - 2p3s(^{1}P_{1}^{2})$	3437.14	*	1.45e+2	3.23e+1	1.7/e+1	5.8/e+0	4.00e+0	3.4/e+0	3.53e+0
$3p^{1}D^{e} - 3s^{1}P^{o}$									
$2p3p({}^{1}D_{2}^{e}) - 2p3s({}^{1}P_{1}^{o})$	3995.00	*	7.14e+2	1.54e+2	8.42e+1	2.85e+1	2.07e+1	1.96e+1	2.15e+1
$3p^{1}D^{e} - 3s^{3}P^{o}$									
$2p3p({}^{1}D_{2}^{e}) - 2p3s({}^{3}P_{1}^{0})$	3955.85	*	1.20e+2	2.58e+1	1.42e+1	4.79e+0	3.47e+0	3.29e+0	3.62e+0
$3p^{3}P^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}P_{2}^{c}) - 2p3s(^{4}P_{1}^{0})$	4654.53	*	1.74e+2	2.75e+1	1.41e+1	3.90e+0	2.39e+0	1.88e+0	1.89e+0
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	4667.21	*	3.91e+2	7.66e+1	4.20e+1	1.43e+1	1.09e+1	1.09e+1	1.26e+1
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{1}P_{1}^{o})$	4674.91	*	2.13e+2	2.52e+1	1.24e+1	3.36e+0	2.06e+0	1.64e+0	1.74e+0
$3p^{3}P^{e} - 3s^{3}P^{o}$ (V5)									
$2p3p({}^{3}P_{2}^{e}) - 2p3s({}^{3}P_{2}^{o})$	4630.54	*	4.16e+3	6.57e+2	3.36e+2	9.32e+1	5.72e+1	4.49e+1	4.51e+1
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	4601.48	*	1.17e+3	1.85e+2	9.45e+1	2.62e+1	1.61e+1	1.26e+1	1.27e+1
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	4643.09	*	1.84e-5	3.60e-6	1.97e-6	6.73e-7	5.10e-7	5.12e-7	5.91e-7
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	*	8.39e+1	1.65e+1	9.02e+0	3.07e+0	2.33e+0	2.34e+0	2.70e+0
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	4607.15	*	1.22e-1	2.39e-2	1.31e-2	4.47e-3	3.39e-3	3.40e-3	3.93e-3
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	*	1.34e+3	1.58e+2	7.74e+1	2.10e+1	1.29e+1	1.03e+1	1.09e+1
$3p^{3}P^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}P_{2}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1275.25	*	5.32e+2	8.41e+1	4.30e+1	1.19e+1	7.32e+0	5.75e+0	5.77e+0
$2p3p(^{3}P_{2}^{\tilde{e}}) - 2s2p^{3}(^{3}D_{3}^{\tilde{o}})$	1275.04	*	2.92e+3	4.61e+2	2.36e+2	6.54e+1	4.01e+1	3.15e+1	3.17e+1
$2p3p(^{3}P_{0}^{\tilde{e}}) - 2s2p^{3}(^{3}D_{1}^{\tilde{o}})$	1276.80	*	9.80e+2	1.16e+2	5.68e+1	1.54e+1	9.48e+0	7.52e+0	7.98e+0
$3p^{3}S^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}S_{1}^{e})-2p3s(^{1}P_{1}^{o})$	5073.59	*	1.45e+2	1.98e+1	9.89e+0	2.68e+0	1.63e+0	1.31e+0	1.49e+0
$3p^{3}S^{e} - 3s^{3}P^{o}$									
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5045.10	*	1.78e+3	2.42e+2	1.21e+2	3.27e+1	1.99e+1	1.60e+1	1.82e+1
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	5010.62	*	8.18e+2	1.12e+2	5.57e+1	1.51e+1	9.19e+0	7.36e+0	8.40e+0
$2p3p(^{3}S_{1}^{e}) - 2p3s(^{3}P_{0}^{\hat{o}})$	5002.70	*	1.29e+3	1.76e+2	8.79e+1	2.38e+1	1.45e+1	1.16e+1	1.33e+1
$3p^{3}S^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}S_{1}^{e}) - 2s2p^{3}(^{3}D_{1}^{o})$	1304.79	*	7.72e+2	1.05e+2	5.26e+1	1.42e+1	8.68e+0	6.95e+0	7.93e+0
$2p3p(^{3}S_{1}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1304.77	*	2.28e+3	3.12e+2	1.55e+2	4.20e+1	2.56e+1	2.05e+1	2.34e+1

						$T_{\rm e}[{ m K}]$			
Transition	<i>λ</i> [Å]		125	500	1000	5000	10,000	15,000	20,00
$3n^{3}D^{e} - 3s^{3}P^{0}$ (V3)									
$2p3p(^{3}D_{e}^{e}) - 2p3s(^{3}P_{e}^{o})$	5679.56	*	8.45e+3	1.69e+3	8.97e+2	2.42e+2	1.41e+2	1.07e+2	9.60e-
$2p3p(^{3}D_{e}^{3}) - 2p3s(^{3}P_{e}^{3})$	5710.77	*	2.20e+3	2.93e+2	1.47e+2	3.80e+1	2.20e+1	1.74e+1	2.01e-
$2n3n(^{3}D^{e}) - 2n3s(^{3}P^{o})$	5666.63	*	6.07e+3	8.11e+2	4.07e+2	1.05e+2	6.10e+1	4.83e+1	5 55e
$2p_{2}p_{1}(2p_{2}) = 2p_{2}p_{3}(2p_{1})$ $2p_{3}n(^{3}D^{e}) = 2n_{3}^{3}s(^{3}P^{0})$	5730.66	*	1.36e+2	1 72e+1	8 43e+0	2 12e+0	1.23e+0	9.92e - 1	1.23e
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5686.21	*	1 79e+3	2 26e+2	1.11e+2	2 79e+1	1.62e+0	1.31e+1	1.62e
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	5676.02	*	3.00e+3	3.80e+2	1.86e+2	4.69e+1	2.72e+1	2.19e+1	2.73e
$3p^{3}D^{e} - 2s2p^{3}^{3}P^{0}$	1 - 10 - 01			-					
$2p_{3}p_{3}(^{3}D_{3}) - 2s_{2}p_{3}(^{3}P_{2})$	1740.31	*	3.52e+3	7.06e+2	3.74e+2	1.01e+2	5.8/e+1	4.46e+1	4.00e
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}P_{2}^{0})$	1743.23	*	9.44e+2	1.26e+2	6.33e+1	1.64e+1	9.48e+0	7.50e+0	8.63e
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}P_{1}^{o})$	1743.20	*	2.91e+3	3.88e+2	1.95e+2	5.04e+1	2.92e+1	2.31e+1	2.66e
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}P_{0}^{o})$	1745.26	*	1.24e+3	1.57e+2	7.67e+1	1.93e+1	1.12e+1	9.02e+0	1.12e
$2p3p(^{3}D_{1}^{e}) - 2s2p^{3}(^{3}P_{1}^{o})$	1745.05	*	9.11e+2	1.15e+2	5.65e+1	1.42e+1	8.24e+0	6.65e+0	8.27e
$3p^{3}D^{e} - 2s2p^{3}{}^{3}D^{o}$									
$2p3p(^{3}D_{2}^{e}) - 2s2p^{3}(^{3}D_{2}^{o})$	1343.57	*	1.25e+2	2.51e+1	1.33e+1	3.58e+0	2.09e+0	1.59e+0	1.42e
$2p_{3}p_{1}^{(3}D_{e}^{2}) - 2s_{2}p_{1}^{(3}D_{e}^{2})$	1343.34	*	1.06e+3	2.13e+2	1.13e+2	3.04e+1	1.77e+1	1.34e+1	1.21e
$2n3n(^{3}D^{e}) - 2s2n^{3}(^{3}D^{0})$	1345.34	*	1.87e+2	2.50e+1	1.25e+1	3.24e+0	1.88e+0	1.49e+0	1.716
$2p_{2}p_{1}(D_{2}) = 2s_{1}^{2}p_{1}(D_{1})$ $2p_{2}n_{3}n_{1}(D_{1}^{e}) = 2s_{1}^{2}n_{1}^{3}(D_{1}^{0})$	1345 31	*	8 93e+2	1.19e+2	5 99e+1	1.55e+1	8 97e+0	7 10e+0	8 176
$2p3p(^{3}D^{e}) - 2s2p(^{3}D^{0})$	1345.08	*	2.32e+2	$3.10e \pm 1$	1.56e+1	1.030+1	2 33e+0	1.84e±0	2 12
$2p3p(D_2) = 2s2p(D_3)$ $2p3p(3D_2) = 2s2p(D_3)$	1246.44	*	2.320+2 5.54a+2	5.100 ± 1	1.300 ± 1	4.020±0	2.33C+0	1.040+0	5.02
$2p3p(^{\circ}D_{1}) - 2s2p(^{\circ}D_{1})$	1340.44	*	3.346+2	7.010+1	3.430 ± 1	8.03e+0	3.010+0	4.04e+0	1.05
$2p3p(^{5}D_{1}^{5}) - 2s2p^{5}(^{5}D_{2}^{5})$	1346.41	*	2.04e+2	2.58e+1	1.26e+1	3.18e+0	1.84e+0	1.49e+0	1.856
$3p^{3}D^{e} - 3s^{1}P^{o}$									
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{1}P_{1}^{o})$	5747.30	*	9.71e+2	1.30e+2	6.51e+1	1.68e+1	9.74e+0	7.71e+0	8.876
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	5767.45	*	3.79e+2	4.79e+1	2.35e+1	5.91e+0	3.43e+0	2.76e+0	3.446
$3p^{1}P^{e} - 3s^{1}P^{o}$									
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{1}P_{1}^{o})$	6482.05	*	1.17e+2	2.21e+1	1.15e+1	2.93e+0	1.66e+0	1.27e+0	1.35
$3n^{1}P^{e} - 3s^{3}P^{o}$									
$2n3n(^{1}P^{e}) - 2n3s(^{3}P^{o})$	6435.61	*	1.07e+3	2.03e+2	1.06e+2	2.69e+1	1.52e+1	1.16e+1	1.246
$2p3p(^{1}p^{e}) - 2p3s(^{3}p^{0})$	6379.62	•	6.27e+2	1.18e+2	6.15e+1	1.57e+1	8 87e±0	6.78e±0	7 234
$2p3p(^{1}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	6366.79	*	2.65e+2	5.00e+1	2.60e+1	6.64e+0	3.75e+0	2.87e+0	3.06
$3p^{-1}P^{e} - 2s^{2}p^{3}P^{0}$ $2n^{3}n^{(1}P^{e}) - 2s^{2}n^{3}(^{3}P^{0})$	1805 47	*	4.70 + 2	8 880+1	1620+1	1 180+1	6 660+0	5 000+0	5 12
$2p3p(r_1) - 2s2p(r_0)$ $2r2r(1p^2) - 2r2r^3(3p^0)$	1805.29	*	4.700+2	0.000 ± 1	4.02e+1	1.100 ± 1	0.000 ± 0	3.090 ± 0	2.420
$2p_{2}p_{1}(P_{1}) - 2s_{2}p_{1}(P_{2})$	1805.28	*	2.29e+3	4.55e+2	2.25e+2	5.74e+1	5.25e+1	2.48e+1	2.040
$2p3p(^{1}P_{1}^{2}) - 2s2p^{3}(^{3}P_{1}^{3})$	1805.24	*	1.40e+3	2.65e+2	1.38e+2	3.51e+1	1.99e+1	1.52e+1	1.620
$2s2p^{3}{}^{3}P^{o} - 2p^{2}{}^{1}D^{e}$									
$2s2p^{3}(^{3}P_{2}^{0}) - 2p^{2}(^{1}D_{2}^{e})$	1064.95	*	7.38e+3	1.37e+3	7.19e+2	3.54e+2	3.26e+2	2.79e+2	2.546
$2s2p^{3}(^{3}P_{1}^{o}) - 2p^{2}(^{1}D_{2}^{e})$	1064.96	*	3.88e+3	5.74e+2	2.93e+2	1.45e+2	1.34e+2	1.16e+2	1.116
$2s2p^{3}{}^{3}P^{o} - 2p^{2}{}^{1}S^{e}$									
$2s2p^{3}(^{3}P_{1}^{o}) - 2P^{2}(^{1}S_{0}^{e})$	1306.71	*	1.67e+3	2.47e+2	1.26e+2	6.22e+1	5.78e+1	4.99e+1	4.756
$2s2n^{3}{}^{3}D^{o} - 2n^{2}{}^{1}S^{e}$									
$2s2p^{3}(^{3}D_{1}^{o}) - 2P^{2}(^{1}S_{0}^{e})$	1678.89	*	1.20e+3	1.58e+2	8.06e+1	8.52e+1	8.23e+1	6.95e+1	6.23
$2_{e}2n^{3}{}^{3}D^{0}$ $2n^{2}{}^{1}D^{e}$									
$2s_{2}p^{3}(^{3}D^{0}) = 2p^{2}(^{1}D^{0})$	1200 70	<u>ب</u> د	1 020+2	2 5/012	1 30042	1 370+2	1 37017	1 12012	1.00/
$2s2p^{2}(D_{1}) - 2p^{2}(D_{2})$ $2s2p^{3}(3D_{1}) - 2p^{2}(D_{2})$	1299.79	*	1.920+3	2.540+2	2.01-+2	2 80-+2	1.520+2	2.08-+2	1.000
$2s_2p^2(^{-}D_2^{-}) - 2p^2(^{-}D_2^{-})$	1299.81	*	5.25e+3	7.50e+2	5.91e+2	5.80e+2	5.04e+2	5.08e+2	2.786
$2s2p^{2}(^{3}D_{2}^{0}) - 2p^{2}(^{4}D_{2}^{0})$	1300.04	*	5.55e+3	9.45e+2	5.04e+2	5.17e+2	5.01e+2	4.21e+2	3.77e

Table 7. Fit parameters and maximum errors	$\delta [\%]$ for $T_{\rm e} < 10,000$ K and $N_{\rm e} =$	= 10^2 cm ⁻³ . The results are for	or Case B recombination.

Transition	λ[Å]	a_0	a_1	a_2	a_3	a_4	<i>a</i> 5	$\delta[\%]$
$2n3d(^{3}E^{0}) = 2n3n(^{3}D^{e})$	5001.14	22 7408	26 4603	15 2874	4 6280	0 7091	0.0439	0.356
$2p3d(^{3}F_{2}) - 2p3p(^{3}D_{1})$ $2p3d(^{3}F_{2}) - 2p3p(^{3}D_{2})$	5001.14	22.7408	-20.4093	10.0870	-4.0200	0.7091	-0.0439	0.550
$2p3d(^{3}\Gamma_{3}) - 2p3p(^{3}D_{2})$	5005.15	27.4901	-33.7298	19.9010	-0.1407	0.9514	-0.0391	0.343
$2p_{3}d(^{2}F_{4}^{*}) - 2p_{3}p(^{2}D_{3}^{*})$	5005.15	-1.1211	9.8180	-0.048/	2.0585	-0.3243	0.0206	0.301
$2p3d(^{2}F_{2}^{2}) - 2p3p(^{2}D_{2}^{2})$	5016.59	22.2038	-20.9731	10.0((2)	-4./344	0.7202	-0.0449	0.467
$2p3d({}^{3}F_{3}^{0}) - 2p3p({}^{3}D_{3}^{0})$	5025.66	20.5231	-33.7292	19.9662	-0.1334	0.9483	-0.0588	0.454
$2p3d(^{2}F_{2}) - 2p3p(^{2}D_{3})$	5040.72	20.2540	-20.3407	15.2021	-4.5980	0.7042	-0.0435	0.317
$2p3d(^{3}D_{2}^{2}) - 2p3p(^{3}D_{1}^{2})$	4774.24	17.6233	-23.3485	13.2635	-3.9552	0.5963	-0.0364	0.316
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{1}^{0})$	4779.72	28.7969	-36.1782	20.8559	-6.2078	0.9318	-0.0564	0.399
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{2}^{0})$	4/81.19	17.1965	-20.3326	11.6093	-3.5090	0.5363	-0.0332	0.309
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{0})$	4/88.13	15.0/1/	-23.0057	13.0340	-3.8/8/	0.5836	-0.0355	0.350
$2p3d(^{3}D_{1}^{3}) - 2p3p(^{3}D_{2}^{2})$	4/93.65	28.8856	-37.2076	21.5572	-6.4437	0.9/10	-0.0590	0.445
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{3}^{0})$	4803.29	17.8891	-19.5032	11.0/16	-3.33/3	0.5093	-0.0315	0.377
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{3}^{0})$	4810.31	14.6157	-23.7978	13.55/6	-4.0496	0.6111	-0.03/3	0.339
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{0}^{0})$	5927.81	29.7388	-37.6123	21.8227	-0.5288	0.9843	-0.0598	0.498
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{1}^{0})$	5931.78	19.1633	-23.5024	13.3461	-3.9/55	0.5984	-0.0364	0.313
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{1}^{0})$	5940.24	26.3005	-36.3425	20.9651	-6.2438	0.9377	-0.0568	0.367
$2p3d({}^{3}D_{3}^{0}) - 2p3p({}^{3}P_{2}^{e})$	5941.65	18.5252	-20.1624	11.5010	-3.4755	0.5312	-0.0329	0.306
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{2}^{e})$	5952.39	14.9734	-22.8415	12.9341	-3.8491	0.5793	-0.0353	0.462
$2p3d({}^{3}D_{1}^{0}) - 2p3p({}^{3}P_{2}^{e})$	5960.90	27.9758	-36.9651	21.3843	-6.3832	0.9606	-0.0583	0.382
$2p3d({}^{3}P_{1}^{0}) - 2p3p({}^{3}P_{0}^{c})$	5452.08	1.1669	3.1186	-2.2008	0.5731	-0.0761	0.0042	0.248
$2p3d({}^{5}P_{0}^{0}) - 2p3p({}^{5}P_{1}^{e})$	5454.22	-10.5538	13.0714	-8.8743	2.8317	-0.4611	0.0304	0.346
$2p3d({}^{5}P_{1}^{0}) - 2p3p({}^{5}P_{1}^{e})$	5462.59	-0.6924	2.6639	-1.9267	0.4918	-0.0642	0.0035	0.285
$2p3d({}^{3}P_{2}^{0}) - 2p3p({}^{3}P_{1}^{e})$	5478.10	3.5424	-4.2407	2.3658	-0.8722	0.1588	-0.0113	0.232
$2p3d({}^{3}P_{1}^{0}) - 2p3p({}^{3}P_{2}^{e})$	5480.06	1.2694	3.2475	-2.2984	0.6088	-0.0824	0.0047	0.247
$2p3d({}^{3}P_{2}^{0}) - 2p3p({}^{3}P_{2}^{0})$	5495.67	6.3594	-3.7218	2.0073	-0.7489	0.1378	-0.0099	0.220
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	5666.63	31.1856	-39.0972	22.9521	-6.9565	1.0612	-0.0650	0.501
$2p3p(^{5}D_{1}^{e}) - 2p3s(^{5}P_{0}^{o})$	5676.02	25.1520	-30.1399	17.2491	-5.1356	0.7724	-0.0468	0.488
$2p3p(^{5}D_{3}^{e}) - 2p3s(^{5}P_{2}^{o})$	5679.56	4.2859	2.4117	-2.5937	0.9560	-0.1743	0.0126	0.392
$2p3p(^{5}D_{1}^{e}) - 2p3s(^{5}P_{1}^{o})$	5686.21	25.5213	-31.1223	17.8902	-5.3423	0.8054	-0.0489	0.460
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	5710.77	29.9671	-37.7899	22.0813	-6.6697	1.0145	-0.0620	0.445
$2p3p(^{5}D_{1}^{e}) - 2p3s(^{5}P_{2}^{o})$	5730.65	24.4097	-31.1447	17.9137	-5.3535	0.8079	-0.0491	0.415
$2p4f 3[7/2]_3^e - 2p3d(^3F_2^0)$	4073.04	18.0226	-20.0722	11.1430	-3.2657	0.4843	-0.0292	0.267
$2p4f 3[5/2]_2^e - 2p3d({}^{3}F_2^{0})$	4076.91	18.7777	-22.0105	12.2968	-3.6018	0.5331	-0.0321	0.248
$2p4f 3[5/2]_3^e - 2p3d({}^{3}F_2^{0})$	4077.40	15.2053	-20.8583	11.5374	-3.3543	0.4932	-0.0295	0.235
$2p4f 3[7/2]_4^e - 2p3d({}^3F_3^e)$	4082.27	18.3303	-20.7357	11.6079	-3.4250	0.5110	-0.0310	0.381
$2p4f 3[7/2]_3^e - 2p3d({}^3F_3^e)$	4082.89	16.3244	-19.3772	10.6744	-3.1099	0.4588	-0.0276	0.293
$2p4f 3[5/2]_2^e - 2p3d({}^3F_3^o)$	4086.83	16.8241	-20.3649	11.1954	-3.2378	0.4736	-0.0282	0.298
$2p4f 3[5/2]_3^e - 2p3d({}^3F_3^e)$	4087.30	18.1756	-21.2737	11.8201	-3.4485	0.5086	-0.0305	0.257
$2p4f 3[7/2]_4^e - 2p3d({}^{5}F_4^{0})$	4095.90	17.7251	-20.3932	11.3872	-3.3544	0.4998	-0.0303	0.375
$2p4f 3[7/2]_3^e - 2p3d({}^{3}F_4^o)$	4096.58	16.4360	-20.5808	11.4825	-3.3775	0.5025	-0.0304	0.292
$2p4f 3[5/2]_3^e - 2p3d({}^{3}F_4^o)$	4100.97	16.8475	-21.1839	11.7443	-3.4188	0.5030	-0.0301	0.285
$2p4f 4[9/2]_4^e - 2p3d({}^3F_3^o)$	4026.08	-4.6635	14.0398	-9.2835	2.8851	-0.4554	0.0288	0.318
$2p4f4[7/2]_3^e - 2p3d({}^3F_2^o)$	4035.08	-1.3418	9.8078	-6.7937	2.1009	-0.3201	0.0192	0.140
$2p4f 4[9/2]_4^e - 2p3d({}^3F_4^o)$	4039.35	-4.8538	12.3455	-8.1638	2.5193	-0.3963	0.0251	0.285
$2p4f 4[9/2]_5^e - 2p3d({}^3F_4^o)$	4041.31	-3.5704	13.1507	-8.6540	2.6676	-0.4186	0.0264	0.269
$2p4f4[7/2]_4^e - 2p3d({}^3F_3^o)$	4043.53	0.2708	6.9704	-4.8535	1.4452	-0.2105	0.0119	0.170
$2p4f 4[7/2]_3^e - 2p3d({}^3F_3^o)$	4044.78	-1.4394	8.5130	-5.8822	1.7849	-0.2661	0.0155	0.101
$2p4f4[7/2]_4^e - 2p3d(^3F_4^o)$	4056.90	-0.8271	7.6260	-5.3423	1.6230	-0.2422	0.0141	0.111
$2p4f4[7/2]_{3}^{e} - 2p3d(^{3}F_{4}^{o})$	4058.16	-2.9455	8.4285	-5.8307	1.7700	-0.2641	0.0154	0.051
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	4601.48	20.7866	-25.3749	15.1539	-4.7239	0.7380	-0.0460	0.344
$2p3p(^{3}P_{1}^{\bar{e}}) - 2p3s(^{3}P_{0}^{\bar{o}})$	4607.16	1.7118	0.6341	-2.7728	1.4148	-0.3028	0.0241	0.600
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	4.3844	0.8955	-2.9318	1.4608	-0.3091	0.0244	0.622
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	34.2231	-44.8491	26.4485	-8.0118	1.2208	-0.0746	0.253
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	4630.54	21.3870	-25.4963	15.2577	-4.7648	0.7456	-0.0466	0.226
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	4643.09	-2.0492	0.5066	-2.6706	1.3751	-0.2953	0.0235	0.605

Table 8. The same as Table 7 but for $10,000 \le T_e \le 20,000$ K and $N_e = 10^2$ cm⁻³.

Transition	ک ړ کړ	1	1	1	1.	1.	1.	1.	510/ 1
	λ[A]	D_0	D_1	<i>b</i> ₂	<i>b</i> ₃	b_4	<i>b</i> 5	<i>b</i> ₆	0[%]
$2p3d({}^{3}F_{2}^{0}) - 2p3p({}^{3}D_{1}^{e})$	5001.14	4.0807	-4.8537	10.8131	-5.7467	1.6643	-0.0937	-1.1401	0.105
$2p3d({}^{3}F_{3}^{0}) - 2p3p({}^{3}D_{2}^{e})$	5001.48	8.5638	-9.2646	12.9159	-6.1298	1.6024	0.5439	-1.3349	0.112
$2p3d({}^{3}F_{4}^{o}) - 2p3p({}^{3}D_{3}^{e})$	5005.15	1.3006	-1.3424	5.5162	-2.7575	0.8097	-0.8554	-0.8026	0.118
$2p3d({}^{3}F_{2}^{o}) - 2p3p({}^{3}D_{2}^{e})$	5016.39	12.9496	-20.2178	21.2091	-9.9809	2.2035	1.1948	-1.7026	0.065
$2p3d(^{3}F_{3}^{o}) - 2p3p(^{3}D_{3}^{e})$	5025.66	7.8221	-11.9792	14.4626	-7.3337	1.7237	0.7413	-1.5171	0.019
$2p3d(^{3}F_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	5040.72	-7.1739	9.6530	-7.4632	2.3748	-0.2830	2.7094	-1.7328	0.013
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{1}^{e})$	4774.24	-7.3956	7.2197	-6.1707	1.7555	-0.2650	1.4554	-1.3196	0.126
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}D_{1}^{e})$	4779.72	0.7178	0.4617	1.9964	-0.9810	0.3059	-0.7224	-0.7097	0.138
$2p3d(^{3}D_{3}^{o}) - 2p3p(^{3}D_{2}^{e})$	4781.19	5.4541	-9.0142	8.8589	-4.2768	0.8014	0.9048	-1.6004	0.007
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{2}^{e})$	4788.13	-13.6334	10.1281	-10.4434	2.9222	-0.5800	0.9021	-1.1579	0.149
$2p3d(^{3}D_{1}^{\tilde{o}}) - 2p3p(^{3}D_{2}^{\tilde{e}})$	4793.65	3.3812	-3.5990	4.2274	-1.9879	0.4354	0.3912	-1.2250	0.009
$2p3d(^{3}D_{3}^{o}) - 2p3p(^{3}D_{3}^{e})$	4803.29	9.7682	-11.8547	12.9028	-5.5617	1.2339	0.8010	-1.4226	0.124
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	4810.31	-17.4705	13.2077	-14.2905	4.2025	-0.9086	0.8775	-1.2046	0.152
$2p3d(^{3}D_{1}^{\tilde{0}}) - 2p3p(^{3}P_{0}^{\tilde{e}})$	5927.81	2.0884	-0.2351	1.9837	-0.9006	0.2697	-0.0920	-0.8768	0.132
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{1}^{e})$	5931.78	5.4454	-10.6663	10.3379	-5.1858	0.8879	1.0841	-1.8105	0.006
$2p3d(^{3}D_{1}^{\tilde{0}}) - 2p3p(^{3}P_{1}^{\tilde{e}})$	5940.24	-9.5729	10.2019	-9.7430	3.2069	-0.6571	1.5238	-1.5707	0.143
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}P_{2}^{e})$	5941.65	2.7213	-0.6440	3.7185	-1.7366	0.5274	-0.1152	-0.9347	0.091
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5952.39	-17.8720	16.2951	-15.7645	4.8473	-0.9618	1.0867	-1.3078	0.175
$2p3d(^{3}D_{1}^{\tilde{o}}) - 2p3p(^{3}P_{2}^{\tilde{e}})$	5960.90	1.2680	-2.1548	1.8901	-1.2395	0.0095	0.0290	-1.4315	0.023
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}P_{0}^{e})$	5452.08	3.0716	-5.7499	4.9295	-2.5128	0.0106	0.5699	-1.9170	0.025
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}P_{1}^{0})$	5454.22	-12.8709	4.2373	-7.4339	1.8553	-0.4253	0.5203	-0.8981	0.143
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}P_{1}^{e})$	5462.59	-4.6357	2.1351	-2.2901	0.6315	-0.0811	0.6572	-0.6598	0.109
$2p3d(^{3}P_{0}^{a}) - 2p3p(^{3}P_{1}^{e})$	5478.10	-16.9479	18.8295	-17.0898	5.4855	-1.0294	1.4477	-1.5478	0.154
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}P_{0}^{e})$	5480.06	4.7635	-8.8255	8 3223	-4.1687	0.6809	0.8905	-1.7742	0.030
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5495.67	7,2363	-11.0445	12.3577	-6.0607	1.3387	0.8096	-1.5295	0.009
$2p3n(^{3}D^{e}) - 2p3p(^{1}2)$	5666.63	4 8361	-4 3153	8 8786	-4 3729	1 2693	0.1271	-1 1614	0.116
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5676.02	11 1840	-14 2824	16 3877	-7 4346	1.2093	0.8650	-1 4839	0.081
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5679 56	3 8261	-1 5/197	4 0652	-1 6968	0.5406	0.0050	-1.0220	0.125
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5686.21	2 0572	3 /818	8.0064	4 2566	1 2280	0.1912	1.0220	0.123
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5710.77	2.9372	-3.4818	7 5427	3 0075	1.1136	-0.1818	-1.0805	0.107
$2\mu_{3}\mu_{3}(D_{2}) - 2\mu_{3}\sigma_{1}(T_{2})$	5720.45	5.7070	-5.0770	12 5064	-3.7073 6 6076	1 1 201	0.0450	-1.1390	0.123
$2p_{1}(D_{1}) - 2p_{2}(P_{2})$	3/30.03	0.0383	-11.4149	0.5904	-0.0020	1.4284	0.9807	-1.0820	0.010
$2p413[7/2]_{3} - 2p30(^{2}F_{2}^{2})$	4075.04	1.2110	0.6267	0.5814	-0.2300	0.0751	-0.3095	-0./008	0.079
$2p41 3[3/2]_2 - 2p30(^2F_2^0)$	4077.40	2.8//8 0.1200	-1./220	2.4/09	-0.7990	0.14/9	0.3404	-1.0311	0.009
$2p41 3[3/2]_3^2 - 2p30(^3F_2^0)$	4077.40	0.1398	-0.0425	1.3005	-3.104/	0.3231	-2.9977	0.14/1	0.085
$2p4I 3[7/2]_{4}^{2} - 2p3d(^{3}F_{3}^{0})$	4082.27	2.6862	-1.2476	2.1926	-0.8264	0.1972	0.1423	-1.108/	0.017
$2p4I 3[7/2]_3^2 - 2p3d(^3F_3^0)$	4082.89	0.0695	-0.1175	0.4566	-0.7303	0.0006	-1.9849	-0.3149	0.017
$2p4t 3[5/2]_2^{\nu} - 2p3d(^3F_3^0)$	4086.83	0.0877	-0.2870	0.6583	-0.9495	0.0011	-2.3184	-0.2034	0.011
$2p4t 3[5/2]_3^c - 2p3d({}^3F_3^c)$	4087.30	0.2842	0.6488	0.2906	-0.2132	0.0010	-0.8357	-0.8481	0.010
$2p4f 3[7/2]_4^e - 2p3d({}^3F_4^o)$	4095.90	1.8506	-0.6877	1.2756	-0.4934	0.0822	0.0690	-1.2236	0.012
$2p4f 3[7/2]_3^e - 2p3d({}^3F_4^o)$	4096.58	0.1743	-0.6291	1.0354	-1.5527	0.1325	-2.6121	-0.0121	0.126
$2p4f 3[5/2]_3^e - 2p3d({}^3F_4^o)$	4100.97	0.1199	-0.3905	0.5576	-1.3115	-0.0025	-2.4017	-0.1805	0.110
$2p4f 4[9/2]_4^e - 2p3d({}^3F_3^o)$	4026.08	3.2359	-3.6535	4.3534	-2.1965	0.4103	0.1978	-1.3307	0.072
$2p4f 4[7/2]_3^e - 2p3d({}^3F_2^o)$	4035.08	6.3936	-6.0468	6.2972	-2.4481	0.5287	0.6264	-1.2791	0.045
$2p4f 4[9/2]_4^e - 2p3d(^3F_4^o)$	4039.35	0.4376	-1.3406	1.8115	-1.7963	-0.1646	-2.1072	-0.5039	0.074
$2p4f 4[9/2]_5^e - 2p3d(^3F_4^o)$	4041.31	4.3607	-3.5387	4.6003	-1.9299	0.4365	0.2679	-1.2285	0.089
$2p4f 4[7/2]_4^{e} - 2p3d(^3F_3^{o})$	4043.53	2.7719	-1.0488	2.6367	-1.1226	0.3086	0.0399	-1.0136	0.047
$2p4f 4[7/2]_3^{e} - 2p3d(^3F_3^{o})$	4044.78	2.5409	-2.3989	2.6986	-1.3173	0.2439	0.2674	-1.2778	0.009
$2p4f 4[7/2]_4^{e} - 2p3d(^3F_4^{o})$	4056.90	2.4668	-2.2092	2.6698	-1.3132	0.2550	0.2186	-1.2570	0.012
$2p4f 4[7/2]_{3}^{e} - 2p3d({}^{3}F_{4}^{0})$	4058.16	0.1956	-0.6271	0.5750	-1.5982	-0.0229	-2.1675	-0.3261	0.189
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	4601.48	1.6997	-0.5978	3.0448	-1.5673	0.4668	-0.2599	-0.9061	0.092
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	4607.16	-3.9134	0.6193	-1.0839	0.2671	-0.0366	0.3696	-0.5417	0.110
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	1.8610	-2.6842	3.3155	-1.5561	0.4123	0.2203	-1.1563	0.014
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{0})$	4621.39	6.6512	-6.9104	7.7363	-3.1448	0.7220	0.6659	-1.3040	0.071
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	4630.54	5.1902	-4.0696	6.7010	-2.9728	0.7998	0.3110	-1.1537	0.069
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	4643.09	-7.5857	1.4863	-0.8945	0.2657	-0.0313	0.1522	-0.0807	0.095

Table 9. The same as Table 7 but for $T_{\rm e} < 10,000$ K and $N_{\rm e} = 10^3$ cm⁻³.

Transition	λ[Å]	a_0	a_1	<i>a</i> ₂	<i>a</i> ₃	a_4	a_5	δ [%]
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	5001.14	12.5791	-9.3536	3.8787	-0.9076	0.1131	-0.0062	0.147
$2p3d({}^{3}F_{3}^{\tilde{0}}) - 2p3p({}^{3}D_{2}^{\tilde{e}})$	5001.48	16.1471	-14.7117	7.2411	-1.9366	0.2665	-0.0151	0.258
$2p3d({}^{3}F_{4}^{o}) - 2p3p({}^{3}D_{3}^{e})$	5005.15	-5.3569	18.9374	-13.7814	4.6487	-0.7664	0.0495	0.420
$2p3d(^{3}F_{2}^{o}) - 2p3p(^{3}D_{2}^{e})$	5016.39	11.9406	-9.5913	4.0310	-0.9549	0.1202	-0.0066	0.177
$2p3d({}^{3}F_{3}^{\tilde{0}}) - 2p3p({}^{3}D_{3}^{\tilde{e}})$	5025.66	14.9808	-14.3695	6.9773	-1.8372	0.2482	-0.0138	0.161
$2p3d({}^{3}F_{2}^{o}) - 2p3p({}^{3}D_{3}^{e})$	5040.72	10.5551	-10.0243	4.3291	-1.0564	0.1373	-0.0077	0.164
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	4774.24	8.0000	-6.9925	2.3368	-0.4038	0.0315	-0.0010	0.126
$2p3d(^{3}D_{1}^{\tilde{0}}) - 2p3p(^{3}D_{1}^{\tilde{e}})$	4779.72	17.8006	-18.0320	8.9852	-2.4130	0.3362	-0.0195	0.208
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{2}^{e})$	4781.19	7.6248	-3.7945	0.3846	0.1975	-0.0620	0.0048	0.099
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4788.13	5.2536	-6.3158	1.8824	-0.2531	0.0068	0.0006	0.225
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{2}^{e})$	4793.65	17.7011	-18.7642	9.5016	-2.5922	0.3668	-0.0216	0.288
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4803.29	8.3384	-2.9441	-0.2032	0.3971	-0.0954	0.0070	0.162
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4810.31	4.7961	-7.1369	2.4467	-0.4443	0.0387	-0.0015	0.173
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{0}^{e})$	5927.81	18.2783	-18.7278	9.4930	-2.5947	0.3681	-0.0217	0.252
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{1}^{e})$	5931.78	9.2908	-6.7201	2.1297	-0.3265	0.0173	0.0000	0.135
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{1}^{e})$	5940.24	15.0844	-17.8501	8.8792	-2.3828	0.3320	-0.0193	0.203
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{2}^{e})$	5941.65	9.3087	-4.2487	0.7101	0.0822	-0.0419	0.0034	0.141
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{2}^{e})$	5952.39	4.7940	-5.4531	1.2577	-0.0311	-0.0320	0.0032	0.107
$2p3d(^{3}D_{e}^{0}) - 2p3p(^{3}P_{e}^{0})$	5960.90	16.4908	-18.0118	8,9881	-2.4195	0.3382	-0.0197	0.177
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{2}^{e})$	5452.08	-4.5009	14.6387	-10.9913	3,7448	-0.6211	0.0403	0.200
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}P_{1}^{e})$	5454.22	-13.5212	20.0690	-14.5733	4.9307	-0.8174	0.0532	0.334
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}P_{1}^{e})$	5462.59	-6.2169	13,8533	-10.4378	3 5528	-0.5883	0.0381	0.227
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}P_{1}^{e})$	5478.10	-3.7274	9,5009	-7.6712	2.6590	-0.4422	0.0285	0.207
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}P_{0}^{e})$	5480.06	-4.1676	14.3508	-10.7936	3.6780	-0.6099	0.0395	0.184
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}P_{2}^{e})$	5495.67	-0.5846	9 4575	-7.6427	2.6496	-0.4406	0.0284	0.165
$2p3n(^{3}D_{e}^{e}) - 2n3s(^{3}P_{e}^{o})$	5666.63	20.0607	-20 6886	10.7113	-2.9368	0.4096	-0.0232	0.405
$2p3p(^{3}D_{e}^{e}) - 2p3s(^{3}P_{e}^{o})$	5676.02	14,4361	-12.3172	5 4911	-1.3351	0.1679	-0.0088	0.206
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5679.56	-1.6376	13 6093	-10.7334	3,7854	-0.6454	0.0429	0.325
$2pop(^{3}D^{e}) - 2poo(^{3}P^{o})$	5686.21	14 3015	-12 4988	5 6309	-1 3872	0 1774	-0.0095	0.283
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5710.77	18 5703	-18 8880	9 4901	-2 5282	0.3421	-0.0188	0.196
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	5730.65	13 1594	-12 4367	5 5743	-1 3638	0.1729	-0.0091	0.190
$2p3p(12_1) = 2p3s(1_2)$ $2p4f3[7/2]^e = 2p3d(^3F^0)$	4073.04	10 0843	-6 3889	1 9642	-0 2988	0.0176	-0.0004	0.177
$2p413[7/2]_3 = 2p3d(1_2)$ $2p4f3[5/2]^e = 2p3d(^3F^0)$	4076.91	10.0045	-6.9172	2 2067	-0.2500	0.0245	-0.0004	0.233
$2p413[5/2]_2 = 2p3d(1_2)$ $2p4f3[5/2]_e = 2p3d(^3F^0)$	4077.40	6 8257	-6 3995	1.8630	-0 2409	0.0243	0.0000	0.212
$2p413[5/2]_3 = 2p3d(1_2)$ $2p4f3[7/2]^e = 2p3d(^3F^0)$	4082.27	8 9965	-4.6116	0.7426	0.1171	-0.0524	0.0004	0.159
$2p413[7/2]_4 = 2p3d(1_3)$ $2p4f3[7/2]_e = 2p3d(^3F^0)$	4082.27	8 9284	-6 5594	2 0382	-0.3104	0.0175	-0.00042	0.155
$2p = 3[7/2]_3 - 2p = 3n 2d(3E^0)$	1086.83	8 2075	-5.8369	1 4806	-0.1132	_0.0170	0.0003	0.190
$2p413[5/2]_2 - 2p3d(T_3)$ $2p4f3[5/2]_2 - 2p3d(3F_0)$	4080.83	0.3975	-5.8508	1.4800	-0.1155	-0.0130	0.0017	0.222
$2p = 3[3/2]_3 - 2p = 3 = 24(3 = 0)$	4007.50	9.2/19	-5.9105	1.3433	-0.1303	0.0201	0.0014	0.202
$2p+13[7/2]_4 - 2p3u(^{\circ}F_4^{\circ})$ $2p4f3[7/2]^6 - 2p34(^{\circ}F_4^{\circ})$	4093.90	0.0003	-5.0152 5.6614	1.04/8	0.0045	-0.0321	0.0028	0.219
$2p+1 3[7/2]_3 - 2p3u(^{\circ}F_4^{\circ})$	4090.38	7 0510	-3.0044	1.4321	-0.1207	-0.0126	0.0010	0.169
$2p_{41} 3[3/2]_3 - 2p_{30}(^2F_4^0)$	4100.97	1.8349	-3.0983	1.391/	-0.084/	-0.0190	0.0020	0.211
$2p414[9/2]_{4}^{2} - 2p30(^{\circ}F_{3}^{\circ})$	4026.08	-0.8239	19.8/22	-14.3260	4.8110	-0.7925	0.0222	0.335
$2p+1 + [7/2]_3 - 2p30(^{\circ}F_2^{\circ})$	4033.08	-1.0804	12.18/4	-9.3000	3.1/93	-0.3213	0.0332	0.218
$2p414[9/2]_{4}^{2} - 2p3d(^{\circ}F_{4}^{\circ})$	4039.33	-1.9214	19.08/0	-14.2024	4.7709	-0.7029	0.050/	0.304
$2p4f 4[9/2]_{5}^{c} - 2p3d(^{3}F_{4}^{o})$	4041.31	-6.3431	20.0198	-14.3893	4.8221	-0.7928	0.0511	0.389
$2p4f 4[7/2]_4^6 - 2p3d(^3F_3^6)$	4043.53	-1.0284	11.0247	-8.5774	2.9179	-0.4/80	0.0303	0.240
$2p414[7/2]_{3}^{2} - 2p3d(^{3}F_{3}^{0})$	4044.78	-1.9232	11.1980	-8.6981	2.9600	-0.4853	0.0308	0.206
$2p414[7/2]_{4}^{2} - 2p3d(^{3}F_{4}^{0})$	4056.90	-2.1562	11.6730	-9.0218	3.0681	-0.5030	0.0320	0.215
$2p4t 4[7/2]_3^{\circ} - 2p3d({}^{\circ}F_4^{\circ})$	4058.16	-4.2101	12.4375	-9.5313	3.2366	-0.5307	0.0338	0.170
$2p3p(^{3}P_{2}^{c}) - 2p3s(^{3}P_{1}^{0})$	4601.48	11.7422	-9.7894	4.5529	-1.2065	0.1674	-0.0096	0.230
$2p3p(^{3}P_{1}^{c}) - 2p3s(^{3}P_{0}^{0})$	4607.16	-7.5207	16.4594	-13.5023	4.9815	-0.8850	0.0615	0.487
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	-3.9092	15.1417	-12.6169	4.6878	-0.8369	0.0584	0.514
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	24.5973	-29.2915	16.3940	-4.8260	0.7243	-0.0440	0.301
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	4630.54	12.1963	-9.6541	4.4848	-1.1923	0.1666	-0.0097	0.242
2n(2n(2)) = 2n(2n(2))	4643.09	-11 3957	16.5486	-13.5621	5.0015	-0.8884	0.0618	0.447

Table 10. The same as Table 7 but for $10,000 \le T_e \le 20,000$ K and $N_e = 10^3$ cm⁻³.

Transition	λ[Å]	b_0	b_1	b_2	b_3	b_4	b_5	b_6	δ [%]	_
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	5001.14	5.0900	-9.6681	18.5895	-10.8190	3.1004	-0.1127	-1.2715	0.117	
$2p3d({}^{3}F_{3}^{0}) - 2p3p({}^{3}D_{2}^{e})$	5001.48	8.1496	-11.1418	17.5855	-9.3308	2.5425	0.4062	-1.3962	0.142	
$2p3d({}^{3}F_{4}^{o}) - 2p3p({}^{3}D_{3}^{e})$	5005.15	0.4957	-1.9574	4.0614	-0.7921	0.3277	-2.5045	-0.1236	0.097	
$2p3d({}^{3}F_{2}^{0}) - 2p3p({}^{3}D_{2}^{e})$	5016.39	10.0017	-18.5348	24.1598	-13.5435	3.3781	0.8687	-1.7156	0.056	
$2p3d({}^{3}F_{3}^{\tilde{0}}) - 2p3p({}^{3}D_{3}^{\tilde{e}})$	5025.66	8.8667	-15.9365	20.3392	-11.1045	2.6920	0.7884	-1.6433	0.028	
$2p3d({}^{3}F_{2}^{o}) - 2p3p({}^{3}D_{3}^{e})$	5040.72	-14.9946	23.3356	-19.0802	6.3036	-0.7802	2.8050	-2.0791	0.033	
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{1}^{e})$	4774.24	-6.8546	7.5362	-6.2725	2.0281	-0.2554	1.2853	-0.9936	0.118	
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}D_{1}^{e})$	4779.72	10.2691	-15.2839	16.3095	-7.6241	1.6801	1.0306	-1.6136	0.066	
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{2}^{e})$	4781.19	6.0179	-11.1695	11.3921	-5.7784	1.1266	1.0398	-1.7136	0.017	
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{2}^{e})$	4788.13	-13.1580	11.0747	-9.9645	2.9709	-0.4183	0.8602	-0.9258	0.111	
$2p3d(^{3}D_{1}^{o}) - 2p3p(^{3}D_{2}^{e})$	4793.65	6.9678	-11.9621	13.1038	-6.6434	1.4283	0.9471	-1.6465	0.012	
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{3}^{e})$	4803.29	3.0923	-2.1623	5.3519	-2.7640	0.7885	0.0003	-1.0663	0.101	
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	4810.31	-17.3346	14.4913	-13.2661	3.9025	-0.5952	0.8758	-1.0039	0.165	
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{0}^{e})$	5927.81	9.2892	-12.8780	14.2363	-6.6960	1.5288	0.9217	-1.5440	0.112	
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{1}^{e})$	5931.78	9.1858	-22.5088	23.8247	-12.7467	2.4077	1.6218	-2.2000	0.013	
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{1}^{e})$	5940.24	-9.9592	10.6891	-9.2121	2.7494	-0.4193	1.4546	-1.3924	0.130	
$2p3d(^{3}D_{3}^{3}) - 2p3p(^{3}P_{2}^{2})$	5941.65	7.9880	-8.7555	11.0612	-5.0279	1.2324	0.5949	-1.3297	0.124	
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{2}^{0})$	5952.39	-17.6793	16.6956	-15.5860	4.7121	-0.7951	1.0405	-1.2149	0.115	
$2p3d(^{3}D_{1}^{3}) - 2p3p(^{3}P_{2}^{2})$ $2p3d(^{3}D_{1}^{9}) - 2p3p(^{3}P_{2}^{6})$	5960.90	-85.3030	140.5960	-105.2180	5 2202	-5.3091	7.0998	-4.4951	0.037	
$2p3d(^{3}P_{1}) - 2p3p(^{3}P_{0})$ $2p3d(^{3}P_{0}) - 2p3p(^{3}P_{0})$	5452.08	3.0378 12.6210	-11.1802	7 4900	-3.3302	0.8773	0.5205	-1.6/41	0.017	
$2p3d({}^{1}0) - 2p3p({}^{1}1)$ $2p3d({}^{3}P^{0}) - 2p3p({}^{3}P^{e})$	5462.50	-12.0219	4.4020 2.7834	-7.4990	0.6816	0.4501	0.5295	-0.9320	0.081	
$2p3d(^{3}P^{o}) - 2p3p(^{3}P^{e})$	5478 10	-16 1153	19 8964	-16 6581	5 4341	-0.0809	1 4428	-0.4238	0.081	
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5480.06	4 7437	-8.3420	8 4792	-4 3282	0.8208	0.8132	-1.6105	0.013	
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}P_{0}^{e})$	5495.67	10.4958	-21.0142	26.7208	-14.8980	3.5449	0.8782	-1.7567	0.035	
$2p3p(^{3}D_{e}^{e}) - 2p3s(^{3}P_{e}^{o})$	5666.63	9.4998	-11.8878	16.2808	-8.1429	2.1735	0.6555	-1.4511	0.070	
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	5676.02	4.4514	-8.7808	16.3587	-9.2683	2.6183	-0.1912	-1.2257	0.105	
$2p3p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	5679.56	4.3087	-1.5875	3.6990	-1.4036	0.4279	0.1897	-0.9828	0.071	
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	5686.21	10.7944	-16.0430	19.3823	-9.7916	2.4407	0.9313	-1.6112	0.093	
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	5710.77	7.1571	-9.5510	13.5510	-7.1421	1.9120	0.5703	-1.4327	0.068	
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5730.65	6.8452	-16.3976	20.0101	-11.5983	2.6320	1.0068	-1.8490	0.027	
$2p4f 3[7/2]_3^e - 2p3d({}^3F_2^o)$	4073.04	3.0368	-2.0677	2.7051	-1.1023	0.2451	0.2748	-1.1420	0.011	
$2p4f 3[5/2]_2^e - 2p3d({}^3F_2^o)$	4076.91	2.5585	-1.6725	2.1847	-0.6395	0.0140	0.3515	-1.7801	0.012	
$2p4f 3[5/2]_{3}^{e} - 2p3d({}^{3}F_{2}^{o})$	4077.40	0.3595	-1.1994	1.3041	-3.2715	-0.0038	-2.6851	-0.1293	0.116	
$2p4f 3[7/2]_4^e - 2p3d(^3F_3^0)$	4082.27	2.5260	-1.4539	2.1137	-0.8711	0.1936	0.1806	-1.0986	0.013	
$2p4f3[7/2]_{3}^{e} - 2p3d(^{3}F_{3}^{0})$	4082.89	0.1538	-0.3934	0.5890	-0.9357	0.0008	-1.8937	-0.3984	0.021	
$2p4f 3[5/2]_2^2 - 2p3d(^3F_3)$	4086.83	0.1509	-0.4686	0.6814	-1.1244	-0.0015	-2.1851	-0.2901	0.020	
$2p4I 3[5/2]_{3}^{2} - 2p3d(^{3}F_{3}^{2})$	4087.30	0.9635	-0.4902	1.0449	-0.5904	0.0004	-0.2683	-1.26/2	0.008	
$2p41 3[7/2]_{4}^{2} - 2p30(^{2}F_{4}^{2})$	4095.90	1.5045	-0.8520	1.2893	-0.6270	0.0911	0.0243	-1.1992	0.014	
$2p415[7/2]_3 - 2p50(^{\circ}\Gamma_4)$ $2p4f2[5/2]^e - 2p2d(^{\circ}\Gamma_4)$	4090.38	0.1625	-0.0045	0.9993	-1.0809	0.2101	-2.0925	0.0790	0.104	
$2p415[5/2]_3 - 2p50(^{\circ}F_4)$ $2p4f4[9/2]^e - 2p3d(^{3}F^{\circ})$	4100.97	1 2628	-0.4344	1 4857	-1.1629	0.0019	-1.9309	-0.5520	0.122	
$2p414[9/2]_4 - 2p3d(T_3)$ $2p4f4[7/2]^e - 2p3d(^3F^0)$	4020.08	9.6151	-11 7925	11 6551	-0.8039	0.2050	0.9036	-0.9325	0.018	
$2p 4f 4[9/2]^{e} = 2p 3d(^{3}F^{0})$	4039 35	0.3510	-1.2005	1.9453	-1.5934	-0.0033	-2.2881	-0.3600	0.030	
$2p4f4[9/2]_{4}^{e} - 2p3d(^{3}F^{0})$	4041.31	3.5495	-1.3763	2.9937	-1,1163	0.3115	0.1498	-1.0967	0.097	
$2p4f 4[7/2]^{e} - 2p3d(^{3}F^{o})$	4043.53	2.9216	-1.1705	2.4094	-1.0030	0.2668	0.1230	-1.0031	0.081	
$2p4f 4[7/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4044.78	2.2637	-2.1451	2.4748	-1.2562	0.2311	0.2074	-1.2272	0.009	
$2p4f4[7/2]_{4}^{e} - 2p3d(^{3}F^{o})$	4056.90	2.2488	-1.9829	2.3285	-1.1657	0.2217	0.1949	-1.1933	0.014	
$2p4f 4[7/2]_{2}^{e} - 2p3d(^{3}F_{4}^{o})$	4058.16	0.1037	-0.3028	0.0499	-1.2452	0.1531	-2.1216	-0.1216	0.113	
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	4601.48	8.3174	-11.2586	12.8395	-6.0080	1.3987	0.8286	-1.4767	0.083	
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	4607.16	-3.7394	1.4364	-0.9074	0.2832	-0.0344	0.3357	-0.1902	0.133	
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	1.4946	-2.5494	3.5572	-1.8310	0.5133	-0.0400	-1.1141	0.015	
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	5.1869	-6.1643	8.7717	-4.3283	1.1201	0.4542	-1.3168	0.085	
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	4630.54	5.1708	-4.1738	7.2823	-3.4665	0.9795	0.3337	-1.1920	0.129	
1 1 2' 1 2'										

Table 11. The same as Table 7 but for $T_{\rm e} < 10,000$ K and $N_{\rm e} = 10^4$ cm⁻³.

Transition	<i>λ</i> [Å]	a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5	$\delta[\%]$
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	5001.14	11.7090	-6.5834	1.3517	0.1004	-0.0749	0.0072	0.152
$2p3d({}^{3}F_{3}^{\tilde{0}}) - 2p3p({}^{3}D_{2}^{\dot{e}})$	5001.48	15.2174	-12.0798	4.9234	-1.0327	0.1019	-0.0037	0.134
$2p3d({}^{3}F_{4}^{o}) - 2p3p({}^{3}D_{3}^{\tilde{e}})$	5005.15	-3.6703	16.6101	-12.4552	4.2428	-0.6991	0.0449	0.323
$2p3d(^{3}F_{2}^{o}) - 2p3p(^{3}D_{2}^{e})$	5016.39	11.4997	-7.5496	1.9948	-0.1110	-0.0406	0.0050	0.143
$2p3d({}^{3}F_{3}^{\overline{0}}) - 2p3p({}^{3}D_{3}^{\overline{e}})$	5025.66	14.4619	-12.4357	5.1295	-1.0900	0.1095	-0.0041	0.153
$2p3d(^{3}F_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	5040.72	9.7249	-7.2919	1.8114	-0.0475	-0.0513	0.0057	0.070
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{1}^{e})$	4774.24	7.2931	-4.5648	0.0977	0.4872	-0.1341	0.0108	0.093
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{1}^{e})$	4779.72	15.4504	-12.8741	4.9683	-0.9514	0.0796	-0.0019	0.223
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{2}^{e})$	4781.19	8.3396	-3.7836	-0.2417	0.5559	-0.1400	0.0109	0.170
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4788.13	4.8131	-4.3402	-0.0535	0.5375	-0.1423	0.0113	0.172
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{2}^{e})$	4793.65	15.0982	-13.1688	5.1862	-1.0300	0.0935	-0.0029	0.220
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{3}^{e})$	4803.29	10.1965	-4.9192	0.5279	0.2989	-0.0977	0.0082	0.170
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{3}^{e})$	4810.31	3.7392	-4.0871	-0.2292	0.5982	-0.1528	0.0120	0.132
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{0}^{e})$	5927.81	15.6421	-13.0697	5.1299	-1.0144	0.0913	-0.0028	0.181
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{1}^{e})$	5931.78	8.7787	-4.6725	0.1785	0.4585	-0.1292	0.0105	0.102
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{1}^{e})$	5940.24	13.3671	-13.7560	5.5691	-1.1533	0.1131	-0.0041	0.127
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}P_{2}^{e})$	5941.65	9.8860	-3.9811	-0.1060	0.5099	-0.1323	0.0104	0.191
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}P_{2}^{0})$	5952.39	4.7396	-4.1727	-0.1846	0.5867	-0.1513	0.0120	0.142
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{2}^{e})$	5960.90	14.2045	-12.9762	5.0623	-0.9909	0.0874	-0.0025	0.106
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}P_{0}^{0})$	5452.08	-3.3920	13.3278	-10.3854	3.5918	-0.5974	0.0386	0.248
$2p3d(^{3}P_{0}^{0}) - 2p3p(^{3}P_{1}^{0})$	5454.22	-11.8216	17.4776	-12.9393	4.3832	-0.7204	0.0462	0.330
$2p3d(^{3}P_{1}^{0}) - 2p3p(^{3}P_{1}^{0})$	5462.59	-5.0596	12.4727	-9.7945	3.3905	-0.5636	0.0363	0.214
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{1}^{o})$ $2r2d(^{3}P_{2}^{o}) - 2r2r(^{3}P_{1}^{o})$	54/8.10	-2.2/40	12 2751	-7.0034	2.5402	-0.4338	0.0284	0.215
$2p3d(^{\circ}P_{1}^{\circ}) - 2p3p(^{\circ}P_{2}^{\circ})$ $2p2d(^{\circ}D_{1}^{\circ}) - 2p3p(^{\circ}P_{2}^{\circ})$	5480.00	-2.0032	12.3751	-9.1414	3.3811	-0.5030	0.0304	0.230
$2p_{2}n_{2}^{(3}D_{2}^{e}) - 2p_{2}n_{2}^{(3}D_{2}^{e})$	5666 62	0.4030	0.3044 15 2029	-7.4373	2.0833	-0.4309	0.0299	0.230
$2psp(^{3}D_{2}) - 2pss(^{3}P_{1})$ $2p3p(^{3}D_{2}) - 2p3s(^{3}P_{2})$	5676.02	17.4005	-13.2936	0.3713	-1.4580	0.1460	-0.0033	0.210
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5670.02	0.0717	-0.3127	2.2331	-0.0646	-0.0014	0.0075	0.103
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5686.21	11 8102	6 0/13	1 2228	0.2480	0.1140	0.0394	0.105
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5710.77	16.8423	-1/ 9268	6 3129	-1 3/96	0.1336	-0.0045	0.149
$2p3p(^{3}D^{e}) - 2p3s(^{3}P^{0})$	5730.65	10.5391	-6 6702	1.0344	0.3120	-0.1255	0.0045	0.102
$2p3p(D_1) = 2p3s(T_2)$ $2p4f 3[7/2]^e = 2p3d(^3F^0)$	4073.04	9 4 1 4 0	-3 7849	-0 5354	0.512)	-0.1233	0.0113	0.123
$2p413[7/2]_{3} = 2p3d(1_{2})$ $2p4f3[5/2]^{e} = 2p3d(^{3}F^{0})$	4076.91	8 7566	-3 3301	-0.9193	0.8579	-0 1980	0.0134	0.223
$2p4f 3[5/2]_2 = 2p3d(^3F_2^0)$	4077.40	6.1418	-3.7767	-0.6230	0.7613	-0.1825	0.0140	0.229
$2p4f 3[7/2]^{e} - 2p3d(^{3}F^{o})$	4082.27	8.9818	-3.1386	-0.9904	0.8783	-0.2024	0.0154	0.207
$2p4f 3[7/2]_{2}^{6} - 2p3d(^{3}F_{2}^{6})$	4082.89	8.0444	-3.6462	-0.6322	0.7513	-0.1800	0.0138	0.139
$2p4f 3[5/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4086.83	8.4732	-4.5010	-0.1445	0.6044	-0.1570	0.0123	0.124
$2p4f 3[5/2]_{2}^{e} - 2p3d(^{3}F_{2}^{o})$	4087.30	8.4141	-2.9861	-1.1576	0.9388	-0.2115	0.0158	0.183
$2p4f 3[7/2]_{4}^{e} - 2p3d(^{3}F_{4}^{o})$	4095.90	8.9432	-3.7918	-0.5191	0.7113	-0.1733	0.0134	0.187
$2p4f 3[7/2]_{3}^{e} - 2p3d({}^{3}F_{4}^{0})$	4096.58	7.6147	-3.9040	-0.4758	0.7052	-0.1734	0.0134	0.105
$2p4f 3[5/2]_{3}^{e} - 2p3d({}^{3}F_{4}^{0})$	4100.97	7.4178	-3.4894	-0.8203	0.8280	-0.1936	0.0147	0.139
$2p4f 4[9/2]_4^{e} - 2p3d({}^3F_3^{o})$	4026.08	-5.0944	17.2857	-12.7754	4.3232	-0.7109	0.0455	0.318
$2p4f 4[7/2]_{3}^{e} - 2p3d({}^{3}F_{2}^{o})$	4035.08	0.3746	9.7576	-8.3206	2.9825	-0.5069	0.0331	0.238
$2p4f 4[9/2]_4^{e} - 2p3d({}^3F_4^{o})$	4039.35	-6.7737	18.0747	-13.2917	4.4898	-0.7374	0.0472	0.322
$2p4f 4[9/2]_{5}^{\vec{e}} - 2p3d({}^{3}F_{4}^{\vec{o}})$	4041.31	-6.0256	19.7676	-14.3448	4.8103	-0.7853	0.0500	0.329
$2p4f 4[7/2]_4^{\breve{e}} - 2p3d({}^3F_3^{\breve{o}})$	4043.53	0.2722	9.9275	-8.4572	3.0330	-0.5157	0.0337	0.289
$2p4f 4[7/2]_{3}^{e} - 2p3d({}^{3}F_{3}^{o})$	4044.78	-0.9086	10.5738	-8.8877	3.1758	-0.5393	0.0352	0.256
$2p4f 4[7/2]_4^{e} - 2p3d(^3F_4^{o})$	4056.90	-0.1609	9.3994	-8.1176	2.9261	-0.4992	0.0327	0.338
$2p4f 4[7/2]_{3}^{e} - 2p3d({}^{3}F_{4}^{\vec{o}})$	4058.16	-2.1465	10.0247	-8.5154	3.0505	-0.5184	0.0338	0.240
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	4601.48	12.0706	-9.4098	3.8596	-0.8816	0.1039	-0.0050	0.218
$2p3p(^{3}P_{1}^{\bar{e}}) - 2p3s(^{3}P_{0}^{\bar{o}})$	4607.16	-8.4812	18.7792	-15.3637	5.6674	-1.0060	0.0699	0.619
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	-6.0966	19.5491	-15.8789	5.8370	-1.0335	0.0716	0.456
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	22.0960	-24.1044	12.4934	-3.4414	0.4860	-0.0279	0.246
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	4630.54	13.8333	-11.5004	5.2829	-1.3598	0.1832	-0.0102	0.277
						1 00 10		

Table 12. The same as Table 7 but for $10,000 \le T_e \le 20,000$ K and $N_e = 10^4$ cm⁻³.

Transition	<i>λ</i> [Å]	b_0	b_1	b_2	b_3	b_4	b_5	b_6	δ [%]
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	5001.14	7.5464	-20.6491	35.3950	-21.6467	5.9869	-0.2129	-1.3891	0.171
$2p3d({}^{3}F_{2}^{0}) - 2p3p({}^{3}D_{2}^{e})$	5001.48	5.4344	-13.9923	25.1163	-14.3883	3.9862	-0.4843	-1.1799	0.120
$2p3d(^{3}F_{4}^{0}) - 2p3p(^{3}D_{2}^{e})$	5005.15	0.8597	2.2875	-0.4769	0.2119	-0.0007	-0.5229	-0.3551	0.097
$2p3d({}^{3}F_{0}^{4}) - 2p3p({}^{3}D_{0}^{2})$	5016.39	9.0157	-26.8968	41.0479	-25.4710	6.4845	0.0136	-1.5685	0.077
$2p3d(^{3}F_{0}^{2}) - 2p3p(^{3}D_{0}^{2})$	5025.66	9.3255	-19.1596	25.8965	-14.8728	3.6687	0.7105	-1.6874	0.033
$2p3d(^{3}F_{0}^{2}) - 2p3p(^{3}D_{0}^{2})$	5040.72	-10.6413	8.9049	-6.1303	-4.0371	-0.1665	1.9121	-2.7627	0.396
$2p3d(^{3}D_{0}^{\circ}) - 2p3p(^{3}D_{1}^{e})$	4774.24	-9.1418	11.6148	-9.7345	3.3344	-0.4313	1.4271	-1.0692	0.126
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{1}^{0})$	4779.72	10.2843	-18.3764	22,3938	-11.9676	2.8317	0.9316	-1.7007	0.029
$2p3d(^{3}D^{0}) - 2p3p(^{3}D^{e})$	4781 19	6 6948	-13 4605	14 0980	-7 3706	1 4753	1 1472	-1 7990	0.017
$2p3d(^{3}D^{0}) - 2p3p(^{3}D^{e})$	4788 13	-12 5118	11 4747	-10.0390	3 2874	-0 4348	0.8033	-0 7604	0.134
$2p3d(^{3}D^{0}) - 2p3p(^{3}D^{0})$	4793 65	10 5375	-22 3521	25 6552	-13 9356	3 0569	1 2298	-1 9175	0.035
$2p3d(^{3}D^{0}) - 2p3p(^{3}D^{e})$	4803 29	4 7885	-5 0789	8 2421	-4 2210	1 1211	0.2765	-1 2190	0.132
$2p3d(^{3}D^{0}) - 2p3p(^{3}D^{0})$	4810 31	-16 5900	14 9139	-13 4027	4 2460	-0 5890	0.8215	-0.8725	0.102
$2p3d(^{3}D_{2}) - 2p3p(^{3}D_{3})$	5027.81	6 3784	-11 3862	16 6776	-9 5150	2 1227	0.4230	-1.4746	0.072
$2p3d(^{3}D^{0}) - 2p3p(^{3}P^{e})$	5031 78	11 3363	-32 1060	36 9586	-21 1256	4 2607	1 7257	-2 3/01	0.072
$2p3d(D_2) - 2p3p(T_1)$ $2p3d(^3D_2) - 2p3p(^3P_2)$	5040.24	0 3804	-32.1000	0 2442	3 0203	0.3885	1.7257	1 0006	0.034
$2p3d(D_1) - 2p3p(T_1)$ $2p3d(^3D^0) - 2p3p(^3P^0)$	50/1.65	12 1150	15 7173	-9.2442	7 6245	1 7441	0.0441	1 5070	0.100
$2p3d(D_3) - 2p3p(T_2)$ $2p3d(^3D^0) - 2p3p(^3D^0)$	5052.20	17 1222	17 5086	15 1647	-7.0245	0.6720	1.0246	-1.3079	0.120
$2p3d(D_2) - 2p3p(F_2)$ $2p3d(3D_2) - 2p3p(3D_2)$	5060.00	-17.1222	20,6750	-13.1047	6 2002	-0.0739	1.0240	-1.0177	0.109
$2p3d(D_1) - 2p3p(T_2)$ $2p3d(^3P^0) - 2p3p(^3P^0)$	5452.08	-21.1772	12 4503	12 0267	5 0020	1.0628	1 2400	-3.0472	0.015
$2p3d(r_1) - 2p3p(r_0)$ $2p3d(^3P^0) - 2p3p(^3P^0)$	5454.00	12 5110	-12.4303	7 5046	-3.9030	0.4561	0.5200	-1.6274	0.007
$2p3d(1_0) = 2p3p(1_1)$ $2p3d(^3P^0) = 2p3p(^3P^0)$	5462 50	-12.5110	4.4952	-7.5040	0.6017	0.0924	0.5290	-0.9430	0.152
$2p_{3}d(^{3}P_{1}^{0}) = 2p_{3}p(^{3}P_{1}^{e})$	5402.59	-4.0728	2.0001	-2.1397	8 2860	-0.0624	1 5073	-0.4079	0.102
$2p_{3}u(r_{2}) - 2p_{3}p(r_{1})$	5470.10	-20.3998	20.3470	-24.2703	5 2012	-1.1000	1.3973	-1.4214	0.100
$2p3d({}^{3}P^{0}) = 2p3p({}^{3}P^{e})$	5405.67	10 6168	25 9648	36 7316	-5.2915	5 4400	0.5048	1 7430	0.009
$2p_{2}p_{3}(r_{2}) = 2p_{3}p_{3}(r_{2})$	5666 62	8 2280	-23.9046	22 2210	-21.9607	2 4550	0.3940	-1.7430	0.007
$2p_{2}p_{1}(D_{2}) - 2p_{2}p_{1}(P_{1})$ $2p_{2}p_{2}(3D_{2}) - 2p_{2}p_{3}(3D_{2})$	5676.02	6.5260 5.6122	-13.9030	22.5519	-12.4979	3.4339	0.5590	-1.4377	0.112
$2p_{2}p_{1}(D_{1}) - 2p_{2}p_{3}(P_{0})$	5670.56	3.0135 4.1627	-13.3977	23.9962	-14.3391	4.0895	-0.1374	-1.5591	0.115
$2p_3p(^{\circ}D_3) = 2p_3s(^{\circ}P_2)$	5696 01	4.1027	-1.3809	4.1000	-1.3996	2 0215	0.1422	-0.9972	0.003
$2p_{2}p_{1}(D_{1}) - 2p_{2}p_{3}(P_{1})$	5710.77	5.0204	-14.0780	23.4200	-14.2740	2 1/26	0.1107	-1.4500	0.115
$2p_{2}p_{2}(D_{2}) = 2p_{2}s(T_{2})$ $2p_{2}r_{3}(3D_{2}) = 2p_{2}r_{3}(3D_{2})$	5720.65	7 9951	-10.6566	22 4050	-11.3239	3.1430 4 7194	-0.0778	-1.5165	0.119
$2p_{2}p_{1}(D_{1}) - 2p_{2}s(P_{2})$	3/30.03	7.0031	-24.0018	2 0146	-20.5084	4./104	0.0441	-1.6040	0.049
$2p41 5[7/2]_3 - 2p50(^{\circ}F_2)$	4075.04	2.9307	-2.4050	2 5724	-1.5028	0.2903	0.2749	-1.1312	0.012
$2p413[5/2]_2 - 2p30(^{\circ}F_2)$	4070.91	2.3800	-2.0930	2.3734	-1.0843	0.0130	0.4209	-1.0933	0.021
$2p413[5/2]_3 - 2p30(^{1}F_2)$	4077.40	0.3732	-1.2191	0.7369	-3.1807	0.0129	-2.4210	-0.2221	0.107
$2p415[7/2]_4^2 - 2p50(^{\circ}F_3^2)$	4082.27	2.8104	-2.5500	2.8703	-1.2990	0.2710	0.2754	-1.16/0	0.015
$2p413[7/2]_3 - 2p30(^{3}F_3)$	4002.09	0.2451	-0.0330	0.0150	-1.1013	0.0035	-1.0333	-0.3239	0.018
$2p415[5/2]_2 - 2p50(^{\circ}r_3)$ $2p4f2[5/2]_2 - 2p3d(^{3}r_3)$	4080.85	0.2034	-0.3095	0.2200	-1.0547	0.0028	-1.0237	-0.4804	0.047
$2p413[3/2]_{3}^{2} - 2p30(^{2}F_{3}^{2})$	4087.50	2.4193	-5.4154	3.0487	-1.4615	-0.0074	0.4007	-1.0908	0.015
$2p41 5[7/2]_4^2 - 2p50(^{\circ}F_4^2)$	4095.90	5.5295	-5.7204	5.4001	-1.2090	0.0100	0.0225	-1.6055	0.011
$2p415[7/2]_3 - 2p50(^{\circ}F_4)$	4090.38	0.1393	-0.3034	0.9009	-1.6299	0.2304	-2.0303	0.0785	0.151
$2p413[5/2]_{3}^{2} - 2p30(^{2}F_{4}^{2})$	4100.97	0.4625	-1.5207	1.5155	-2.1918	-0.0206	-2.1510	-0.3910	0.110
$2p414[9/2]_4^2 - 2p30(^2F_3^2)$	4026.08	2.9894	-1./10/	2.3884	-0.9923	0.2354	0.2410	-1.0904	0.018
$2p414[7/2]_{3}^{2} - 2p3d(^{3}F_{2}^{2})$	4035.08	0.3974	-0.8206	3.3010	-1.3268	0.3427	-1.0190	-0.4440	0.058
$2p4f 4[9/2]_4^6 - 2p3d(^3F_4^6)$	4039.35	0.2395	-0.7842	1.4228	-1.2369	0.0029	-2.0988	-0.4206	0.020
$2p4f 4[9/2]_{5}^{\circ} - 2p3d({}^{3}F_{4}^{\circ})$	4041.31	0.4931	-0.3274	3.8003	-1.2829	0.4692	-1.2957	-0.6920	0.092
$2p4f 4[7/2]_{4}^{c} - 2p3d(^{3}F_{3}^{o})$	4043.53	3.0522	-1.4613	2.6136	-1.0930	0.2781	0.1578	-1.0157	0.137
$2p4I 4[7/2]_3^2 - 2p3d(^3F_3^0)$	4044.78	2.2160	-2.1788	2.3834	-1.2182	0.2191	0.2229	-1.1941	0.009
$2p4t 4[7/2]_4^{\circ} - 2p3d({}^{\circ}F_4^{\circ})$	4056.90	3.0789	-3.3879	3.4504	-1.6091	0.2859	0.4367	-1.3480	0.012
$2p414[7/2]_{3}^{2} - 2p3d(^{3}F_{4}^{0})$	4058.16	0.2694	-0.8178	0.2772	-1.4225	-0.0069	-1.8496	-0.4099	0.112
$2p_{3}p(^{3}P_{2}^{c}) - 2p_{3}^{2}s(^{3}P_{1}^{0})$	4601.48	4.4690	-6.3580	10.3181	-5.5686	1.4809	0.2236	-1.2808	0.101
$2p_{3}p_{1}(^{3}P_{1}^{2}) - 2p_{3}(^{3}P_{0}^{2})$	460/.16	-3.0911	2.2351	-0.8507	0.1944	-0.0201	0.2294	0.4774	0.078
$2p_{3}p_{1}(^{3}P_{1}) - 2p_{3}(^{3}P_{1})$	4613.87	1.6425	-3.0094	4.0701	-2.1312	0.5864	0.0175	-1.1482	0.014
$2p_{3}p_{0}(^{3}P_{0}^{2}) - 2p_{3}(^{3}P_{1}^{2})$	4621.39	11.7478	-18.6027	20.8983	-10.2966	2.4101	1.1188	-1.6954	0.104
	16 11 6 1	3 6036	/ 1617	u 53798	-5 0496	14777	-0.0956	-1 1235	0 1 10

Table 13. The same as Table 7 but for $T_{\rm e} < 10,000$ K and $N_{\rm e} = 10^5$ cm⁻³.

Transition	λ[Å]	a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5	δ [%]
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	5001.14	13.4797	-7.9074	1.4674	0.2400	-0.1185	0.0110	0.204
$2p3d({}^{3}F_{2}^{0}) - 2p3p({}^{3}D_{2}^{e})$	5001.48	17.7235	-14.9425	6.1881	-1.2988	0.1276	-0.0045	0.127
$2p3d({}^{3}F_{4}^{0}) - 2p3p({}^{3}D_{2}^{e})$	5005.15	-1.2131	12.7460	-10.0136	3.4661	-0.5750	0.0370	0.460
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{2}^{0})$	5016.39	12.9566	-8.3346	1.7444	0.1515	-0.1045	0.0101	0.166
$2p3d({}^{3}F_{2}^{0}) - 2p3p({}^{3}D_{2}^{e})$	5025.66	16.6493	-14.7854	6.0663	-1.2523	0.1189	-0.0039	0.175
$2p3d(^{3}F_{2}^{o}) - 2p3p(^{3}D_{2}^{e})$	5040.72	11.8569	-9.2387	2.3497	-0.0490	-0.0717	0.0080	0.136
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	4774.24	10.3115	-8.0825	1.7211	0.1190	-0.0937	0.0091	0.122
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}D_{1}^{e})$	4779.72	15.2449	-10.9597	3.0127	-0.1610	-0.0650	0.0081	0.151
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4781.19	11.9053	-8.2396	1.9933	-0.0065	-0.0693	0.0074	0.180
$2p3d(^{3}D_{2}^{0}) - 2p3p(^{3}D_{2}^{e})$	4788.13	8.4700	-8.9366	2.2891	-0.0675	-0.0635	0.0072	0.104
$2p3d(^{3}D_{1}^{\tilde{0}}) - 2p3p(^{3}D_{2}^{\tilde{e}})$	4793.65	15.1283	-11.6109	3.4392	-0.2987	-0.0431	0.0067	0.258
$2p3d(^{3}D_{3}^{0}) - 2p3p(^{3}D_{3}^{\tilde{e}})$	4803.29	12.9805	-8.0492	1.8751	0.0296	-0.0748	0.0077	0.159
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}D_{3}^{e})$	4810.31	7.6617	-9.1398	2.4221	-0.1096	-0.0571	0.0068	0.138
$2p3d(^{3}D_{1}^{\tilde{0}}) - 2p3p(^{3}P_{0}^{\tilde{e}})$	5927.81	15.9891	-12.0835	3.7913	-0.4273	-0.0200	0.0051	0.280
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}P_{1}^{o})$	5931.78	11.0603	-6.9173	0.9333	0.3827	-0.1375	0.0120	0.185
$2p3d(^{3}D_{1}^{\tilde{0}}) - 2p3p(^{3}P_{1}^{\tilde{e}})$	5940.24	12.7715	-11.1482	3.1285	-0.1961	-0.0598	0.0077	0.179
$2p3d(^{3}D_{3}^{\dot{0}}) - 2p3p(^{3}P_{2}^{\dot{e}})$	5941.65	13.1037	-7.8209	1.6979	0.0965	-0.0871	0.0086	0.198
$2p3d(^{3}D_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5952.39	7.4408	-7.1470	1.0710	0.3413	-0.1312	0.0116	0.182
$2p3d(^{3}D_{1}^{\tilde{0}}) - 2p3p(^{3}P_{2}^{\tilde{e}})$	5960.90	13.8929	-10.8519	2.9448	-0.1396	-0.0684	0.0083	0.174
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{0}^{e})$	5452.08	-0.5588	9.0187	-7.7510	2.7790	-0.4710	0.0307	0.252
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}P_{1}^{e})$	5454.22	-11.0030	16.1278	-12.0492	4.0832	-0.6689	0.0427	0.352
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{1}^{e})$	5462.59	-2.9483	9.4481	-8.0598	2.8879	-0.4899	0.0320	0.197
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{1}^{e})$	5478.10	0.4230	4.2557	-5.0757	2.0212	-0.3634	0.0246	0.182
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{2}^{e})$	5480.06	-0.4351	9.1038	-7.8153	2.8028	-0.4754	0.0310	0.279
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5495.67	3.9631	3.5329	-4.5894	1.8597	-0.3369	0.0229	0.165
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	5666.63	17.8578	-14.5453	5.4599	-0.9351	0.0510	0.0015	0.126
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	5676.02	13.2867	-7.3589	0.7383	0.5836	-0.1900	0.0167	0.111
$2p3p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	5679.56	4.8160	4.0869	-5.0019	2.0203	-0.3679	0.0253	0.150
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	5686.21	12.5867	-6.5961	0.2542	0.7356	-0.2136	0.0181	0.160
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	5710.77	17.9445	-15.4367	6.0526	-1.1295	0.0825	-0.0005	0.142
$2p3p(^{\circ}D_{1}^{e}) - 2p3s(^{\circ}P_{2}^{o})$	5730.65	12.4702	-8.2972	1.3937	0.3584	-0.1519	0.0141	0.132
$2p4f 3[7/2]_3^e - 2p3d({}^3F_2^e)$	4073.04	12.2484	-6.6152	0.4095	0.6316	-0.1874	0.0156	0.234
$2p4f 3[5/2]_2^e - 2p3d(^3F_2^o)$	4076.91	10.8127	-4.8545	-0.8103	1.0308	-0.2504	0.0195	0.198
$2p4f 3[5/2]_3^e - 2p3d(^3F_2^o)$	4077.40	7.8564	-4.7221	-0.9022	1.0628	-0.2560	0.0198	0.238
$2p4f 3[7/2]_4^e - 2p3d(^3F_3^e)$	4082.27	12.2349	-6.7705	0.5526	0.5733	-0.1763	0.0148	0.198
$2p4f 3[7/2]_3^6 - 2p3d(^3F_3^6)$	4082.89	11.1606	-6.9981	0.6905	0.5305	-0.1696	0.0143	0.199
$2p4f 3[5/2]_2^2 - 2p3d(^3F_3^2)$	4086.83	9.4439	-4.1837	-1.2709	1.18/1	-0.2766	0.0212	0.260
$2p4f 3[5/2]_3^6 - 2p3d(^3F_3^6)$	4087.30	10.9673	-5.3634	-0.4742	0.9218	-0.2330	0.0184	0.217
$2p4f 3[7/2]_4^6 - 2p3d(^3F_4^6)$	4095.90	11.414/	-6.0139	0.0265	0.7524	-0.2062	0.016/	0.213
$2p413[7/2]_{3}^{2} - 2p3d(^{3}F_{4}^{0})$	4090.58	0 2825	-7.1006	0.7619	0.5057	-0.1055	0.0140	0.212
$2p41 5[5/2]_3^2 - 2p30(^2F_4^2)$ $2p4f 4[0/2]_3^2 - 2p30(^2F_4^2)$	4100.97	9.3835	-4.8010	-0.8145	1.0300	-0.2520	0.0196	0.217
$2p414[9/2]_4^2 - 2p30(^2F_3^2)$	4020.08	-3.0/0/	18.5014	-15.5279	4.3864	-0.7551	0.0464	0.550
$2p+1+[7/2]_3 - 2p3u(^3F_2)$ $2pAfA[9/2]^e - 2p3d(^3E_2)$	4033.08	-6 556?	2./103 17.761/	-4.4030	1.0907	-0.3339	0.0245	0.192
$2p = 1 + [9/2]_4 - 2p = 2p = 2n + (P_4)$ $2p = 4 + [9/2]_4 - 2p = 2n + (P_4)$	4039.33	-0.3303	18 0880	-13.1077	4.4702	-0.7300	0.0472	0.321
$2p + 1 + [2/2]_5 - 2p + 3u(F_4)$ $2p + 1 + [2/2]_5 - 2p + 3u(F_4)$	4041.31	1 8081	3 5617	-13.3030	+.+002 2 0811	-0.7550	0.0409	0.355
$2p\pi f 4[7/2]_4 = 2p3u(\Gamma_3)$ $2pAf 4[7/2]^e 2p3d(^3E^0)$	4043.33	4.0704 1 6611	2 5716	-4.2/03	2.0011	-0.3651	0.0205	0.171
$2p\pi 4[7/2]_3 = 2p3u(F_3)$ $2p4f 4[7/2]^e = 2p3d(^3F^0)$	4056 90	4.0044	2.3710	-4.2903	1.0313	-0.3471	0.0240	0.233
$2p = 1 = [7/2]_4 = 2p = 3u(T_4)$ $2p = 4f = 4[7/2]^6 = 2p = 3d(^3 = 6)$	4058 16	3 1611	1 9568	-3.8708	1.7940	-0.3379	0.0234	0.230
$2p_{T1} + [7/2]_3 = 2p_{3}u(\Gamma_4)$ $2n_{3}n(^{3}P^{e}) = 2n_{3}v(^{3}P^{0})$	4601 48	15 7362	-14 3667	-5.0190	-1 6704	0.3240	-0.0118	0.190
$2\mu_{3}\mu_{1}^{(3}P^{e}) = 2\mu_{3}s(r_{1})$ $2\mu_{3}n(^{3}P^{e}) = 2\mu_{3}s(^{3}P^{e})$	4607.16	-6 5874	16 6020	-14 3076	-1.0704 5 4027	-0.0725	0.0682	0.317
$2p_{2}p_{3}p_{1}({}^{3}p_{e}) = 2p_{3}({}^{3}p_{0})$	4613.87	-3.8360	16 7679	-14 4262	5 4427	-0.9723	0.0002	0.334
$2\mu_{3}\mu_{1}^{(3)} = 2\mu_{3}(r_{1})$ $2\mu_{3}\mu_{3}^{(3)} = 2\mu_{3}(r_{1})$	4621 30	-3.8300 22.1000	_22 83/0	11 0544	_2 8/32	0.3752	-0.0080	0.335
$2\mu_{3}\mu_{1}^{(3}P^{e}) = 2\mu_{3}s(r_{1})$ $2\mu_{3}n(^{3}P^{e}) = 2\mu_{3}s(^{3}P^{e})$	4630 54	16 6954	-22.0349	7 0447	-2.0432	0.3732	-0.0202	0.262
$2p_{2}p_{1}(1_{2}) = 2p_{3}s(1_{2})$ $2p_{3}n(^{3}P_{e}) = 2p_{3}s(^{3}P_{e})$	4643 00	-10.1904	16 1020	-14 0122	5 2063	_0.2504	0.0129	0.230
$2p_{1} p_{1} - 2p_{3} (r_{2})$	7043.07	-10.1009	10.1920	-14.0123	5.2705	-0.7334	0.0000	0.407

Table 14. The same as Table 7 but for $10,000 \le T_e \le 20,000$ K and $N_e = 10^5$ cm⁻³.

Transition	<i>λ</i> [Å]	b_0	b_1	b_2	b_3	b_4	b_5	b_6	δ [%]
$2p3d(^{3}F_{2}^{0}) - 2p3p(^{3}D_{1}^{e})$	5001.14	8.6371	-28.7645	46.4861	-28.1871	7.5968	-0.7070	-1.2628	0.199
$2p3d(^{3}F_{3}^{0}) - 2p3p(^{3}D_{2}^{e})$	5001.48	9.7799	-15.5785	23.9781	-13.3185	3.6162	0.4909	-1.5046	0.149
$2p3d(^{3}F_{4}^{0}) - 2p3p(^{3}D_{2}^{e})$	5005.15	7.3195	-5.5325	6.9576	-2.5824	0.6538	0.5439	-1.2082	0.062
$2p3d(^{3}F_{0}^{4}) - 2p3p(^{3}D_{0}^{2})$	5016.39	9.6545	-29.9187	45.6077	-28.4729	7.2324	-0.0415	-1.5753	0.117
$2p3d({}^{3}F_{0}^{2}) - 2p3p({}^{3}D_{0}^{2})$	5025.66	9.3196	-19.8887	27.3066	-15.8535	3.9221	0.6653	-1.6868	0.048
$2p3d(^{3}F_{0}^{o}) - 2p3p(^{3}D_{0}^{e})$	5040.72	19 4889	-65 4463	75.0950	-35,3760	-0.1427	-0.8782	-2.0947	0.274
$2n3d(^{3}D^{0}) - 2n3n(^{3}D^{e})$	4774 24	-12 8694	17 4874	-14 5173	4 9124	-0.6436	1 6827	-1 3141	0.122
$2p3d(^{3}D^{0}) - 2p3p(^{3}D^{e})$	1779 72	9.8316	-18 5402	23 6227	-13 0596	3 1/35	0.8475	-1 6060	0.040
$2p3d(^{3}D^{0}) = 2p3p(^{3}D^{e})$	4781 10	6 8572	14 0005	14 7177	7 7324	1 5538	1 1761	1 8182	0.040
$2p3d(^{3}D_{3}) = 2p3p(^{3}D_{2})$ $2p3d(^{3}D_{2}) = 2p3p(^{3}D_{2})$	4788 13	15 6004	15 7005	13 6364	4 4306	0.6024	0.0523	0.0211	0.125
$2p3d(D_2) = 2p3p(D_2)$ $2p3d(^3D_2) = 2p3p(^3D_2)$	4702.65	-13.0004	24 0841	-13.0304	4.4300	2 4222	1 2646	1 0572	0.123
$2p3d(D_1) - 2p3p(D_2)$ $2p3d(^3D^9) - 2p3p(^3D^9)$	4795.05	11.0108	-24.0841	28.0133	-13.4729	3.4222 1.2422	0.0062	-1.9572	0.036
$2psu(D_3) - 2psp(D_3)$	4805.29	4.1080	-3.0439	9.2200	-4.9450	1.5425	0.0905	-1.2042	0.121
$2p3d(^{\circ}D_{2}) - 2p3p(^{\circ}D_{3})$	4810.31	-16.5820	14.8589	-13.4632	4.2820	-0.5954	0.8185	-0.8/5/	0.133
$2p3d(^{\circ}D_{1}^{\circ}) - 2p3p(^{\circ}P_{0}^{\circ})$	5927.81	8.1255	-15.4050	21.2740	-12.0382	2.9931	0.58/8	-1.5/93	0.038
$2p3d(^{3}D_{2}^{3}) - 2p3p(^{3}P_{1}^{2})$	5931.78	11.63/3	-34.0414	40.0538	-23.2365	4./3/4	1.6580	-2.34/3	0.035
$2p3d(^{3}D_{1}^{3}) - 2p3p(^{3}P_{1}^{2})$	5940.24	-8.9402	10.7726	-9.0620	3.0625	-0.3947	1.2888	-0.9999	0.170
$2p3d({}^{3}D_{3}^{0}) - 2p3p({}^{3}P_{2}^{e})$	5941.65	11.4469	-14.3316	15.5943	-7.0032	1.6256	0.9269	-1.4854	0.086
$2p3d({}^{3}D_{2}^{0}) - 2p3p({}^{3}P_{2}^{e})$	5952.39	-16.9330	17.3867	-15.4450	4.9767	-0.7010	0.9950	-1.0227	0.131
$2p3d(^{3}D_{1}^{0}) - 2p3p(^{3}P_{2}^{e})$	5960.90	-22.3055	32.8036	-24.1876	6.7661	-0.6860	4.3616	-3.0295	0.032
$2p3d({}^{3}P_{1}^{o}) - 2p3p({}^{3}P_{0}^{e})$	5452.08	6.1406	-11.8730	11.5431	-5.7021	1.0427	1.2125	-1.7929	0.012
$2p3d(^{3}P_{0}^{o}) - 2p3p(^{3}P_{1}^{e})$	5454.22	-10.5146	2.2582	-5.1963	1.0740	-0.2721	0.4299	-0.8322	0.090
$2p3d(^{3}P_{1}^{o}) - 2p3p(^{3}P_{1}^{e})$	5462.59	-2.7420	1.5516	-0.9153	0.3134	-0.0399	0.4067	0.0694	0.143
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{1}^{o})$	5478.10	-25.0983	35.8606	-30.6288	10.4973	-1.4980	1.7476	-1.5655	0.167
$2p3d(^{3}P_{1}^{\tilde{0}}) - 2p3p(^{3}P_{2}^{\tilde{e}})$	5480.06	6.4415	-11.3978	11.3608	-5.5376	1.0742	1.0905	-1.6861	0.017
$2p3d(^{3}P_{2}^{o}) - 2p3p(^{3}P_{2}^{e})$	5495.67	10.0448	-26.0865	37.9477	-23.0438	5.7461	0.4400	-1.6964	0.079
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	5666.63	5.4581	-13.3446	24.0823	-14.0041	3.9568	-0.3491	-1.2369	0.120
$2p3p(^{3}D_{1}^{\tilde{e}}) - 2p3s(^{3}P_{0}^{\dot{o}})$	5676.02	5.9041	-16.4372	28.3973	-17.3504	4.8278	-0.3316	-1.3150	0.127
$2p3p(^{3}D_{3}^{e}) - 2p3s(^{3}P_{2}^{o})$	5679.56	1.2623	0.8964	3.2649	-1.2818	0.5032	-0.5862	-0.7711	0.102
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	5686.21	7.2717	-18.3792	29.6238	-18.0785	4.8764	0.0615	-1.4807	0.121
$2p3p(^{3}D_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	5710.77	7.8561	-15.9165	24.5818	-14.2680	3.8105	0.3267	-1.5076	0.122
$2p3p(^{3}D_{1}^{e}) - 2p3s(^{3}P_{2}^{o})$	5730.65	8.6090	-27.2873	37.2224	-23.3873	5.4227	0.5599	-1.8694	0.070
$2p4f 3[7/2]_{0}^{e} - 2p3d({}^{3}F_{0}^{o})$	4073.04	2.9752	-2.7191	3.3255	-1.5457	0.3272	0.2740	-1.1743	0.018
$2p4f 3[5/2]_{e}^{2} - 2p3d(^{3}F_{e}^{2})$	4076.91	2.9303	-3.4957	3.0442	-1.3380	0.0509	0.5673	-1.7108	0.028
$2p4f 3[5/2]_{e}^{e} - 2p3d(^{3}F_{e}^{o})$	4077.40	0.4565	-1.4750	0.8706	-3.2912	0.0095	-2.3639	-0.2515	0.122
$2p4f 3[7/2]^{e} - 2p3d(^{3}F_{0}^{o})$	4082.27	2.6394	-2.0991	2.3889	-1.0872	0.2222	0.2791	-1.1216	0.012
$2p4f 3[7/2]_{e}^{e} - 2p3d(^{3}F_{e}^{o})$	4082.89	0.3268	-0.9432	0.9882	-1.3293	0.0048	-1.7175	-0.5278	0.029
$2p4f 3[5/2]^{e} - 2p3d(^{3}F^{o})$	4086.83	0.3503	-1 1696	1 4447	-1 7621	0.0160	-2 1407	-0.3789	0.084
$2p H 3[5/2]_2 = 2p 3d(^3F^0)$	4087.30	3 0452	-4 7586	3 9571	-1 8480	-0.0024	0.6311	-1.8076	0.0012
$2n4f 3[7/2]^{e} - 2n3d(^{3}F^{0})$	4095 90	2 6445	-3 0250	2 8715	-1 3442	0.1406	0.4369	-1 5326	0.012
$2n4f 3[7/2]^{e} = 2n3d(^{3}F^{0})$	4096 58	0 1922	-0 7028	0 9737	-1 8758	0.2426	-2 5002	-0.0114	0.062
$2n4f 3[5/2]^{e} - 2n3d(^{3}F^{0})$	4100 97	0 4010	-1 3325	0.8531	-1 8856	0.0304	-1 8330	-0 4551	0.122
$2p \cdot 13[3/2]_3 = 2p \cdot 3d(1^4)$ $2p \cdot 4f \cdot 4[9/2]^6 = 2p \cdot 3d(^3F^0)$	4026.08	0.4370	-1 7023	3 1118	_1 0000	0.0304	-2 6456	-0 0700	0.122
$2p_{11} = (2/2)_4 = 2p_{30}(1^2)$ $2p_{4}f_{4}(7/2)^6 = 2p_{3}d_{4}(^3E^0)$	4020.00	1 0722	-0.1272	1 63/18	-0.7386	0.2100	-2.0450	-0.0799	0.040
$2p+1+[7/2]_3 - 2p3u(-F_2)$ $2p4f4[0/2]^e - 2p3d(3F_2)$	4033.08	0.2106	-0.1272	1.0346	-0./300	0.2127	2 0007	-0.0090	0.080
$2p+1+[9/2]_4 - 2pou(-F_4^*)$	4039.33	0.2100	-0.0394	1.2333	-1.1401	0.0021	-2.0007	-0.4341	0.024
$2p_{41} + [9/2]_5 - 2p_{50}(-F_4^{\circ})$	4041.31	0.2324	-0.4180	3.3000	-0.8903	0.3020	-1.0800	-0.3183	0.107
$2p414[7/2]_{4}^{2} - 2p3d(^{2}F_{3}^{2})$	4045.55	2.7078	-1.2801	2.9060	-1.2848	0.3300	0.0396	-1.0249	0.098
$2p4I4[7/2]_{3}^{2} - 2p3d(^{3}F_{3}^{0})$	4044.78	2.5192	-2.7973	3.0250	-1.5101	0.2659	0.2941	-1.2827	0.019
$2p414[7/2]_4^2 - 2p3d(^3F_4^0)$	4056.90	2.4703	-2.4332	2.5603	-1.2508	0.2266	0.3116	-1.2350	0.013
$2p4f 4[7/2]_{3}^{c} - 2p3d({}^{3}F_{4}^{0})$	4058.16	0.3425	-1.0495	0.7846	-1.7245	-0.0126	-2.0484	-0.3731	0.116
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{1}^{o})$	4601.48	9.1199	-13.6131	16.2778	-8.0450	1.9261	0.8529	-1.5466	0.084
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{0}^{o})$	4607.16	-5.5519	2.9022	-2.5477	0.7479	-0.0967	0.5665	-0.6101	0.110
$2p3p(^{3}P_{1}^{e}) - 2p3s(^{3}P_{1}^{o})$	4613.87	1.7687	-3.4075	4.5610	-2.4000	0.6505	-0.0027	-1.1609	0.028
$2p3p(^{3}P_{0}^{e}) - 2p3s(^{3}P_{1}^{o})$	4621.39	6.9311	-12.0498	17.2391	-9.5739	2.4629	0.5289	-1.5061	0.119
$2p3p(^{3}P_{2}^{e}) - 2p3s(^{3}P_{2}^{o})$	4630.54	2.7332	-2.3547	7.4076	-3.9947	1.2435	-0.1996	-1.0526	0.116
a - a -		0. 60.00	1 1 401	0 7210	0 (005	0.0054	0.07(0	0 5000	0 105

Table 15. Comparison of our direct recombination coefficients $[\text{cm}^3 \text{ s}^{-1}]$ to states of N⁺ with those of Kisielius & Storey (2002) and of Nahar (1995). The comparison is for electron temperature $T_e = 1,000$ and 10,000 K, and electron density $N_e = 10^4 \text{ cm}^{-3}$.

		1,000 K			10,000 K					
State	Nahar	KS02	Present	Nahar	KS02	Present				
$2s^22p^2$ (³ P)	2.44e-12	2.26e-12	2.28e-12	8.31e-13	7.69e-13	7.76e-13				
$2s^2 2p^2$ (¹ D)	1.28e-12	1.20e - 12	1.19e-12	4.21e-13	3.92e-13	3.91e-13				
$2s^2 2p^2$ (¹ S)	2.55e-13	2.41e-13	2.39e-13	8.27e-14	7.75e-14	7.66e-14				
$2s^2 2p3d ({}^3F^{\circ})$	1.88e-13	2.00e-13	2.01e-13	5.26e-14	5.59e-14	5.59e-14				
$2s^{2}2p3p(^{3}D)$	1.29e-13	1.41e-13	1.37e-13	4.84e-14	5.42e-14	5.30e-14				
$2s^2 2p4d ({}^3F^{\circ})$	1.13e-13	1.14e-13	1.16e-13	3.26e-14	3.27e-14	3.30e-14				
$2s^2 2p3d(^{3}D^{\circ})$	1.09e-13	1.10e-13	1.10e-13	2.97e-14	3.06e-14	3.09e-14				
$2s^{2}2p3p(^{3}P)$	7.51e-14	7.70e-14	7.47e-14	2.87e-14	3.02e-14	3.01e-14				
$2s2p^{3}(^{3}D^{0})$	7.25e-14	8.10e-14	7.69e-14	3.28e-13	8.16e-13	8.88e-13				
$2s^2 2p3s (^{3}P^{\circ})$	7.07e-14	7.92e-14	7.37e-14	6.17e-14	8.13e-14	7.40e-14				
$2s^2 2p4d (^3D^o)$	7.04e-14	7.04e-14	7.07e-14	1.96e-14	1.98e-14	2.00e-14				
$2s^2 2p5d (^3F^o)$	6.32e-14	6.33e-14	6.51e-14	1.86e-14	1.84e-14	1.87e-14				
$2s^2 2p3d (^3P^o)$	5.64e-14	6.08e-14	6.01e-14	1.54e-14	1.71e-14	1.69e-14				
$2s^2 2p4f(^3G)$	5.54e-14	5.50e-14	5.06e-14	1.31e-14	1.29e-14	1.22e-14				
$2s^2 2p5f(^3G)$	4.92e-14	4.94e-14	4.44e-14	1.17e-14	1.16e-14	1.08e-14				
$2s^{2}2p3p(^{1}D)$	4.73e-14	4.80e-14	4.78e-14	1.78e-14	1.80e-14	1.81e-14				
$2s^2 2p4f(^3F)$	4.46e-14	4.57e-14	4.31e-14	_	1.08e-14	1.00e-14				
$2s^2 2p5d (^3D^o)$	4.20e-14	4.19e-14	4.18e-14	1.18e-14	1.20e-14	1.21e-14				
2s ² 2p3d (¹ F ^o)	4.14e-14	4.22e-14	4.21e-14	_	1.14e-14	1.14e-14				
$2s^2 2p4d (^3P^o)$	3.93e-14	4.06e - 14	3.94e-14	_	1.14e-14	1.12e-14				
$2s2p^{3}$ (³ P ^o)	_	2.40e-14	2.27e-14	1.54e-13	3.50e-13	3.88e-13				
$2s2p^{3}(^{3}S^{o})$	_	3.21e-17	6.43e-17	2.24e-14	3.28e-14	3.64e-14				
$2s^{2}2p4p(^{3}D)$	_	3.71e-14	3.62e-14	1.31e-14	1.37e-14	1.34e-14				
2s ² 2p5d (³ P ^o)	-	_	2.30e-14	_	_	6.72e-15				
Sum	5.25e-12	5.08e-12	5.09e-12	2.21e-12	2.88e-12	2.99e-12				
Total	1.04e-11	1.07e-11	9.31e-12	3.10e-12	3.81e-12	5.35e-12				