Table 3. Additional Photometry of GRB 071025

Telescope	$t_{\rm mid}$	Filter	t_{exp}	Mag.	Flux
	s		s		μJy
DADTOD	110 5	,	45.0	> 10.04	< 600 0
RAPTOR	290.4	clear	45.0	> 10.94 17 187 ± 0.159	< 608.9 485.9 ± 66.2
RAPTOR	526.3	clear	180.0	16.793 ± 0.118	698.5 ± 71.9
RAPTOR	739.6	clear	180.0	16.792 ± 0.111	699.2 ± 67.9
RAPTOR	953.3	clear	180.0	16.761 ± 0.112	719.4 ± 70.5
RAPTOR	1167.1	clear	180.0	17.517 ± 0.236	358.6 ± 70.1
RAPTOR	1381.1	clear	180.0	17.012 ± 0.140	570.9 ± 69.1
RAPTOR	1594.9	clear	180.0	17.096 ± 0.156 17.186 ± 0.170	528.4 ± 70.7 486.4 ± 70.5
BAPTOR	2022.3	clear	180.0	17.216 ± 0.172	473.1 ± 69.3
RAPTOR	2235.6	clear	180.0	17.691 ± 0.281	305.5 ± 69.7
RAPTOR	2448.6	clear	180.0	17.429 ± 0.227	388.8 ± 73.4
RAPTOR	2662.1	clear	180.0	18.050 ± 0.372	219.5 ± 63.7
RAPTOR	2875.7	clear	180.0	18.097 ± 0.413	210.2 ± 66.5
Super LOTIS	3124.9	clear D	240.0	17.793 ± 0.265 > 10.46	278.1 ± 60.2
Super-LOTIS	244.2	B	100.0	19.180 ± 0.240^{X}	7751 ± 1537^{x}
Super-LOTIS	478.7	R	300.0	19.700 ± 0.240^{x}	48.02 ± 9.52^{x}
Super-LOTIS	813.7	R	300.0	18.910 ± 0.120	99.40 ± 10.40
Super-LOTIS	1315.1	R	600.0	19.520 ± 0.160	56.67 ± 7.77
Super-LOTIS	1983.3	R	600.0	19.390 ± 0.180	63.88 ± 9.76
REM	470.0	Y	81.0	15.620 ± 0.240	1257.2 ± 249.3
REM	1281.0	Y	181.0	15.700 ± 0.190 16.280 \pm 0.220	1167.9 ± 187.5
REM	2055.0	I	91.0	10.280 ± 0.330 15.220 ± 0.200	1374.0 ± 179.4
REM	1085.0	J	181.0	15.570 ± 0.160	995.5 ± 136.4
REM	2304.0	Ĵ	331.0	15.350 ± 0.110	1219.1 ± 117.5
REM	185.0	н	82.0	16.131 ± 0.690	373.7 ± 175.8
REM	666.0	н	181.0	13.890 ± 0.050	2944.3 ± 132.5
REM	1623.0	H	331.0	14.380 ± 0.080	1874.9 ± 133.2
REM	2795.0	H	81.0	> 14.90	< 1161.4
REM	275.0	ĸ	212.0	13.430 ± 0.130 12 900 ± 0.070	2899.2 ± 321.2 4723.6 ± 294.9
Lick	2714.0	J	212.0	15.817 ± 0.030	792.9 ± 21.6
Lick	2997.0	Ĵ	210.0	15.938 ± 0.030	709.3 ± 19.3
Lick	3279.0	J	210.0	16.135 ± 0.030	591.6 ± 16.1
Lick	3562.0	J	210.0	16.227 ± 0.030	543.6 ± 14.8
Lick	3846.0	J	210.0	16.378 ± 0.030	473.0 ± 12.9
Lick	4129.0	J	210.0	16.504 ± 0.030 16 558 ± 0.030	421.2 ± 11.5
Lick	4413.0	J	210.0	16.558 ± 0.030 16.684 ± 0.030	400.7 ± 10.9 356 8 \pm 9 7
Lick	2714.0	к'	210.0	14.143 ± 0.100^{x}	1503.4 ± 132.3^{x}
Lick	2997.0	к′	210.0	14.321 ± 0.100^{x}	1276.1 ± 112.3^{x}
Lick	3279.0	K'	210.0	14.384 ± 0.100^{x}	1204.1 ± 106.0^{x}
Lick	3562.0	к′	210.0	14.518 ± 0.100^{x}	1064.3 ± 93.6^{x}
Lick	3846.0	к′	210.0	14.583 ± 0.100^{x}	1002.5 ± 88.2^{x}
Lick	4129.0	K'	210.0	14.650 ± 0.100^{x}	942.5 ± 82.9^{x}
Lick	4413.0	K'	210.0	$14.818 \pm 0.100^{\rm x}$	807.4 ± 71.0^{x}
Magnum	10206.0	J	600.0	17.760 ± 0.059	132.4 ± 7.0
Magnum	10326.0	R	600.0	21.850 ± 0.390	6.628 ± 2.000
Magnum	11526.0	Y	300.0	18.408 ± 0.183 10.880 \pm 0.140	96.43 ± 14.96
Magnum	12846.0	ĸ	480.0	19.880 ± 0.140 16.491 ± 0.086	30.49 ± 3.09 172 9 \pm 13 2
Magnum	12846.0	R	600.0	> 21.28	< 11.20
Magnum	14106.0	Н	540.0	17.597 ± 0.082	96.87 ± 7.05
Magnum	14106.0	I	600.0	20.220 ± 0.200	22.29 ± 3.75
Magnum	15366.0	J	540.0	18.320 ± 0.103	79.08 ± 7.16
Magnum	15366.0	R	600.0	> 21.36	< 10.41
Magnum	16506.0	T	540.0 600.0	19.750 ± 0.430 20.460 \pm 0.280	17.87 ± 4.06
Kuiper	5098.5	Î	1055.0	18.452 ± 0.085	113.6 ± 8.6
Kuiper	11260.0	Ι	2176.0	19.798 ± 0.010	32.88 ± 0.30
Kuiper	15382.0	Ι	3530.0	> 19.65	< 37.68
Kuiper	18584.5	Ι	2701.0	> 19.23	< 55.48
Kuiper	1824.8	R	261.7	19.290 ± 0.040	70.05 ± 2.53
Kuiper	2013.5	R P	1225.9	19.790 ± 0.040 20.300 ± 0.060	44.20 ± 1.60 27.63 ± 1.40
Kuiper	8647.0	B	1239.3 2940 0	> 20.85	< 16.65
Kuiper	6468.0	v	240.0	> 21.4	< 12.73
NTT	81101.0	J	5104.0	$20.780 \pm 0.270^{\rm x}$	$8.204 \pm 1.806^{\mathrm{x}}$
NTT	81672.0	н	4938.0	$19.340 \pm 0.200^{\mathrm{x}}$	19.45 ± 3.27^{x}
NTT	82061.0	K	4960.0	$18.780 \pm 0.200^{\mathrm{x}}$	21.00 ± 3.53^{x}
NTT	168032	н	2187.0	> 19.80	< 12.73
GROND	80505.0	g	3266	> 23.2	< 2.44
GROND	80505.0	r	3266	23.140 ± 0.270^{x}	2.281 ± 0.502^{x}
GROND	80505.0	z	3266	22.050 ± 0.100^{x}	6.163 ± 0.542^{x}
GROND	80533.0	J	2160	20.460 ± 0.240^{x}	$11.02 \pm 2.18^{\rm x}$
GROND	80533.0	н	2160	$19.230 \pm 0.340^{\rm x}$	21.53 ± 5.79^{x}
GROND	80533.0	K	2160	> 18.13	< 38.3

Exposure mid-times are measured from the Swift trigger (UT 2007 Oct 25 04:08:54). JHKYRI magnitudes are in the Vega system; griz magnitudes are in the SDSS (approximately AB) system. No Galactic extinction correction has been applied to magnitudes, but reported fluxes are corrected for $E_{B-V} = 0.074$ mag. Limiting values are 3σ . Some $< 3\sigma$ detections are reported, as in many cases these are marginal detections that impose a useful constraint on the light curve or SED. Points marked with an ^X are not used in fitting.