
9. GREAT-CIRCLE REDUCTIONS

The great-circle reductions combined the observations obtained in a time in-
terval of up to nine hours into a set of one-dimensional coordinates of the
objects, the so-called abscissae, defined along a designated reference great cir-
cle. These were the main input to the subsequent sphere solution, in which the
astrometric parameters of the stars were derived. The great-circle reductions
also determined the geometrical instrument parameters, including the basic
angle, transforming the observed signal phases into true angles on the sky, and
the accurate along-scan attitude needed for the Tycho astrometry. This chapter
describes the principles of the great-circle reductions and their practical im-
plementation by FAST and NDAC. Great-circle results obtained by the two
reduction consortia are presented. The early results were found to be affected
by systematic errors, which however disappeared after several iterations of the
great-circle reductions, by using improved star catalogues from previous itera-
tions, fine tuning of the instrument description, and special treatment of star
outliers. The final quality of the results was confirmed by intercomparisons
between the consortia.

9.1. Introduction

In the Hipparcos great-circle reduction semi-contiguous batches of grid coordinates,
each computed from image dissector tube data collected over an observational frame
(see Chapter 5), were combined in so-called reference great-circle sets and processed
together. A reference great-circle set contained the data collected over one orbit of the
satellite and generally covered 2 to 4 revolutions, or 4 to 9 hours of data. All such data
were referred to a reference frame, corresponding to a great circle chosen somewhere in
the middle of the band on the celestial sphere scanned during the reference great-circle
set. The abscissae of the stars contained in the reference great-circle set and an improved
along-scan attitude were computed in this intermediate reference frame, together with
instrument parameters, by a least-squares adjustment.

Data obtained from the Hipparcos main grid provided along-scan information only.
Therefore, and because of the small inclination of the scanning circles with respect to the
reference great circle, the great-circle reduction could only determine one component
of the star position and spacecraft attitude in the reference great-circle frame: the star
abscissa v along the reference great circle and the along-scan attitude ψ . The star
ordinate r and the two transverse attitude components θ and φ could not be estimated.
Hence they did not participate in the least-squares adjustment, but were used as obtained
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from the attitude reconstruction results (see Chapter 7), using the (updated) Input
Catalogue. No effort was made at this stage to estimate the proper motions and parallax:
they could not be estimated due to the very limited time span of the reference great-
circle sets. The final great-circle reductions were all carried out with respect to a star
catalogue based on preliminary reductions of all the Hipparcos data, providing stellar
coordinates with errors that were negligible for the purpose of the great-circle reduction
process.

9.2. Great-Circle Reduction

The great-circle reduction forms a geometric adjustment problem on the sphere with
grid coordinates as observations. Semi-contiguous batches of up to 70 000 grid co-
ordinates, gathered during about 2–4 revolutions, were processed together, producing
one observation equation for each grid coordinate. The observation equations were
solved by a least-squares adjustment with a diagonal weight matrix for the grid coordi-
nates. The unknown parameters were roughly 1800 star abscissae, forming our prime
objective, up to 15 000 along-scan attitude parameters, and some 24 instrumental pa-
rameters. In fact two types of along-scan reconstructed attitude were produced. At
first a geometric along-scan attitude was estimated, consisting of one parameter for each
observational frame of 2.133 . . . s. Later the attitude was smoothed to form a continuous
representation using about 500 B-splines (one every ' 2 minutes). Smoothing of the
attitude also improved the quality of the star abscissae, although excessive smoothing
could introduce systematic errors. This was verified by statistical tests; when necessary,
the number of B-splines, and the location of knots, were adjusted.

Observation Equations

The geometric direction to a star in the reference great-circle frame at set mid-time
was expressed by two angles v (abscissa) and r (ordinate). The determination of the
abscissae v were the prime objective of the great-circle reduction. The abscissa–ordinate
pair (vi , ri ) for star number i was related to the grid coordinate Gik observed for the star
in frame number k, in three steps. First, (vi , ri ) were transformed into the apparent (or
‘proper’) star direction at the time of observation, expressed either in the celestial refer-
ence frame (Section 12.3) or directly in the reference great-circle frame (Section 11.2),
using the known orientation of the reference great circle. Secondly, the direction to
the star was transformed into the instrument reference frame, yielding the field angles
(ηik, ζik) or field coordinates (wik, zik), as defined in Section 10.2. Thirdly, the field
angles or field coordinates were related to the observations Gik which were defined with
respect to the modulating grid by means of the field-to-grid transformation, described
by the instrument parameters (Section 10.2).

The transformation of the reference great-circle frame into the reference frame linked
to the instrument was described by the three angles (ψk, θk, φk) corresponding to the
spacecraft attitude. The angles θk and φk were rotations around the y and x axes of
the instrument, and specified the direction of the z axis. The angle ψk specified the
orientation of the instrument around the z axis. The notation used here for these
angles corresponds to that used in the FAST attitude model (Equation 7.23), but
the presentation below is valid for any representation of the attitude in which (θk, φk)
describe the ‘transverse attitude’ (in NDAC given by the heliotropic angles ξ and ν;
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see Section 7.3) and ψk describes the ‘along-scan attitude’ (in NDAC given by the
heliotropic angle Ω).

The transformation from field coordinates to grid coordinates, including corrections
to the basic angle, is described in Chapter 10 (see also Volume 2, Chapter 10). It
usually required 24 or more instrument parameters, which for notational convenience
are collected in a vector d (see Section 9.6).

The relation between the grid coordinate and geometric position was written symboli-
cally as:

Gik = G(vi , ri , ψk, θk, φk, d, . . .) + �
0

ik [9.1]

with �
0

ik representing the photon noise effect on the grid coordinates. The parameters
needed to correct for aberration, relativistic effects, residual proper motion and parallax
are not mentioned explicitly in the equations. More details about these computations
can be found in Chapter 12.

Linear observation equations, needed for the least-squares estimation, were obtained
by taking the truncated Taylor expansion of Equation 9.1 in a point Gcalc

ik calculated
from a provisional star catalogue, star mapper attitude and instrument calibration. The
linearized equation is:
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with ∆Gik = Gobs
ik − Gcalc

ik . The ∆-quantities on the right hand side were the unknown
corrections to the provisional, or approximate, values for the parameters used in the
calculation of Gcalc

ik . The term O(∆2) represents the linearization error, which is of
second order in the corrections. When the grid coordinates were expressed in angular
units (radians), the partial derivatives with respect to vi and ψk were close to −1 and
+1 respectively. The partial derivatives in ri , θk and φk were much smaller in absolute
value (<~ 10−2), but not zero. The reason is that the grid coordinates G only referred
to the along-scan component, while the other component H was not measured, so
that information on the star ordinate and the transverse attitude components was only
available through the inclination of the scan circles with respect to the reference great
circle. This inclination was at most about ±1.�5 through the choice of the reference great
circle close to the mean scanning direction in the data set.

Therefore, only the corrections ∆vi , ∆ψk and ∆d were computed during the least-squares
adjustment; no attempt was made to estimate ∆ri , ∆θk and ∆φk in the great-circle
reduction. The observation equations were consequently reduced to:

∆Gik =
∂Gik

∂vi
∆vi +

∂Gik

∂ψk
∆ψk +

∂Gik

∂d0
∆d + �ik [9.3]

In this equation �ik is a general noise term including:

(1) the photon noise error �
0

ik;

(2) the projection error on the reference great circle:
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(3) various modelling errors (e.g. instrument, attitude, residual proper motion and
parallax);

(4) the linearization error O(∆2).

The first component is the most important. At the great-circle level it could be modelled
as Gaussian noise.

Least-Squares Solution

The observed grid coordinate differences ∆Gik were collected in a vector y of length
m, and the unknown corrections in a vector x of length n. Equation 9.3 could thus be
written in matrix notation as:

y = A x + e

= ASxS + AAxA + AIxI + e [9.5]

with the m × n design matrix A of partial derivatives. This system of equations was
partitioned in a star part, an attitude part and an instrument part, denoted respectively
by suffix S, A and I in Equation 9.5. The sub-matrices AA and AS were very sparse,
each of them containing only one non-zero element per row. AI on the other hand was
almost completely filled.

Although Equation 9.5 had many solutions, it was not difficult to select a unique
solution, x̂, namely one for which A x̂ was as close as possible to the observed data
y. The well-known least-squares solution follows from minimising the residual sum of
squares E = ê0Q−1

y ê, with ê = y − A x̂ the vector of least-squares residuals, and Qy the
covariance matrix of the observations y. The least-squares solution x̂ was computed by
solving the normal equations:

(A0Q−1
y A) x̂ = A0Q−1

y y [9.6]

It deserves to be emphasized that the vector of observations y was, from a statistical
viewpoint, a stochastic variable; consequently the least-squares estimate x̂, the residuals
ê, and other functions of these variables, such as E , were also stochastic. The errors in
the observations were dominated by photon noise, and could therefore be assumed to
be uncorrelated. Consequently a simple diagonal covariance matrix Qy could be used.

The least-squares solution was computed using Cholesky factorization of the square
symmetric (semi-)positive definite normal matrix A0Q−1

y A. Once the Cholesky factor
had been computed, the equations were rewritten in two triangular systems, which
were solved by simple forward and backward substitution. The actual computation was
organised in the following steps:

(1) elimination of the attitude unknowns;

(2) Cholesky factorization of the (block partitioned) normal equations, solution of the
equations by forward and backward substitution, and computation of the variances;

(3) solution of the attitude parameters, computation of the residuals to the observations,
and testing of the solution.

The star part of the normal matrix was, even after elimination of the attitude parameters,
very sparse (Figure 9.1). In the software only the non-zero elements of this matrix were
stored and numerical operations were performed only on these elements. However,
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Figure 9.1. Non-zero elements in the star part of the normal matrix (lower triangle) and envelope of the Cholesky

factor (upper triangle) after elimination of the attitude parameters. The star parameters have not been re-ordered (left)

or have been re-ordered by the modulo 60� algorithm (right) described by van der Marel (1988).

during the Cholesky factorization new non-zero elements were created, causing so-
called fill-in of the sparse matrix. The fill-in depended on the order in which the
unknowns, and hence the rows and columns of the normal matrix, were given. Before
the Cholesky factorization the star parameters were consequently re-ordered in such
a way as to reduce the fill-in during the factorization (Figure 9.1). The reduction in
computing time allowed by the re-ordering is considerable, not only for the factorization
itself, but for all computations using it, such as the calculation of variances (van der
Marel 1988).

The covariance matrix Qx̂ of the least-squares estimator is the inverse of the normal
matrix if Q−1

y is used as weight matrix. The computation of the complete inverse would
have been too time consuming and is also not very useful. However, a subset of the
covariance matrix, corresponding to the non-zeroes in the Cholesky factor (‘sparse
inverse’), could be obtained in only twice the time of the factorization itself. The
sparse inverse contained all the elements needed to perform statistical testing of the
observations and to produce the proper diagnostics.

Slit Errors

The grid coordinates could be determined from the grid phase only up to an unknown
integer number of slits. The slit numbers had to be computed from approximate
values for the star and attitude parameters. Considering uncertainties in the a priori
positions of 0.2 to 0.8 arcsec in the initial star catalogue, and the slit period of '
1.2 arcsec, it will be obvious that there were a substantial number of slit errors, resulting
in ambiguities and inconsistencies throughout the first reduction iterations. The great-
circle reduction suffered only from inconsistent slit numbers. It could not recognise
a situation where all the grid coordinates of a certain star had the same slit error.
Therefore, the computed star abscissae could still be wrong by one or more grid steps.
The slit errors in the abscissae were ultimately corrected during the sphere solution and
astrometric parameter extraction (see Section 11.6).

Slit inconsistencies resulted in contradictions between the observations of one star dur-
ing the great-circle reduction. Several methods were used for detection and correction
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of slit inconsistencies. First, inconsistencies in the linearized grid coordinates ∆Gik

per star were detected and corrected. This method works well when the attitude and
instrument description were properly described. This method worked even better after
improvement of the along-scan attitude, simultaneously by a sequential adjustment,
using the grid coordinates ∆Gik as observations and estimating correction to the along-
scan attitude and star abscissa. It was possible that some slit inconsistencies were left at
this stage. Therefore, after the least-squares adjustment the results were checked and
remaining slit inconsistencies were corrected and a new solution was computed.

In further iterations of the great-circle reductions, the a priori values were taken from
the last complete sphere solution, while NDAC also used at early reduction stages star
coordinates determined from star mapper observations (see Chapters 6 and 7). In the
final iterations of the great-circle reductions errors in the star catalogue used as input to
the process were decreased to a level that slit number inconsistencies became very rare,
and easy to correct when they occurred at all.

Statistical Tests and Validation

The results of the great-circle reduction were validated by statistical tests. On the basis of
the outcome of these tests, in combination with internal and external iterations, several
actions were possible:

(1) correction of slit numbers;

(2) skipping of doubtful observations, or (in NDAC only) re-weighting of observations;

(3) skipping stars from the normal equations solution (FAST passive stars).

Depending on the outcome of statistical tests, data was validated, i.e. accepted as suf-
ficiently conforming to the model, or rejected (Section 9.7). In the latter case not
only proper diagnostics were generated, but also a new solution without the rejected,
and possibly erroneous, observations was computed. Two types of iterations were
possible: external iterations of the complete great-circle reduction with an improved
attitude description and star catalogue after a preliminary sphere solution and astromet-
ric parameter extraction, and internal iterations within the great-circle reduction itself.
Internal iterations mainly dealt with correction of slit inconsistencies and re-weighting
of observations. Each iteration involved in principle a new least-squares adjustment.
This was, of course, not a very attractive prospect. However, the burden was lightened
considerably by a priori selection of suspected problem stars within FAST, combining
internal iterations with necessary (for other reasons) external iterations, and special
procedures for correcting slit inconsistencies.

The FAST great-circle reduction software did not distinguish between primary and non-
primary reference stars, as was done in the sphere solution (Section 11.4), but rather
between ‘active’ and ‘passive’ stars. Grid coordinates of active stars participated in the
rigorous least-squares adjustment which computed the abscissae of active stars, along-
scan attitude and instrumental parameters. The passive stars were added in later, using
the previously computed active star abscissae, attitude and instrumental parameters,
without changing them.

In general, passive stars were ‘problem’ stars, stars with a high probability of erroneous
measurements, or very faint stars which did not contribute much to the attitude and
instrumental solution. The passive stars were selected (by the software) by static criteria,
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Figure 9.2. Final number of active stars (dots), passive stars per reference great circle with 1-parameter solutions

(+, the points just above the bottom of the graph) and 2-parameter solutions (×, the points at the bottom of the graph)

during the mission (FAST).

for example double star characteristics, as well as dynamically, based on the results of
the statistical testing for star outliers (Equation 9.12). A few passive stars could only be
computed if a linear motion—during the sets—was assumed (2-parameter solutions).
As few as possible passive stars were selected during the last external iteration, to get
the best possible precision for the star abscissae and attitude parameters. Therefore,
during the procedure of external iterations, passive stars which turned out to have good
solutions, were re-introduced as active stars during the next iteration. While, on the
other hand, ‘bad’ active stars were treated as passive stars during the next iteration. On
the average 300–400 passive stars were selected during the first treatment. In the final
iteration this number was reduced to about 100. Figure 9.2 gives the final number of
active and passive stars per reference great circle during the mission.

In the NDAC great-circle reductions data for identified ‘problem’ stars were not passed
through this process, but were side-tracked to the special double-star processing (Chap-
ter 13); thus all the stars retained for the great-circle reductions were effectively treated
as ‘active’ stars.

9.3. Attitude Smoothing

The attitude of the Hipparcos spacecraft was, except for small vibrations (jitter) following
thruster firings, a smooth function of time. Thus the along-scan attitude, which was
initially computed once per observing frame of 2.133 . . .s, could be further improved
by introducing relations between the attitude values of neighbouring frames. In fact,
an additional adjustment of the along-scan attitude, the so-called smoothing step, was
carried out using a model for the attitude which required relatively few parameters.
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The improvement of the attitude led also to improved star abscissae, and hence to an
improved final star catalogue (Figure 9.3).

For attitude smoothing an additional equation was added to the observation equations
for the geometric solution (Equation 9.5):

xA = BxB [9.7]

The smoothed attitude could be expressed in a smaller number of parameters xB than
the frame-by-frame attitude xA which was computed in the geometric solution step.
The observation equations for the smoothed solution were:

y = AABxB + ASxS + AIxI + e [9.8]

The equations were again partitioned in an attitude, star, and instrument part, but
now the star and attitude unknowns had changed roles: the stars were eliminated first,
and the attitude unknowns—now much fewer than in the geometric mode—were re-
ordered using the modulo 360� ordering (van der Marel 1988). In fact, the smoothed
solution was computed as an update to the geometric solution. It was not necessary
to re-compute the instrument parameters. They were already determined very well in
the geometric solution. This was the approach in FAST. In NDAC a slightly different
procedure was used: first Equation 9.5 was solved to give the geometrical attitude
xA. This was then inserted in Equation 9.7, which was solved by least-squares to
give the parameters xB of the smoothed attitude. These, in turn, were inserted into
Equation 9.8, together with xI from the geometrical solution, and the resulting system
was finally solved for the star parameters xS.

In the great-circle reductions the smoothed attitude was modelled by cubic B-splines. In
general splines consist of polynomial segments, of fixed degree, joined end to end with
continuity in a limited number of derivatives at the joints, the so-called knots. Actually,
the B-spline series is a linear combination of shifted base functions or B-splines. It
could represent the attitude at the milliarcsec level by choosing the right knots. This
was performed automatically in the software. Thruster actuations were modelled as
instantaneous impulses, which was justified in view of the relatively short duration of
the pulses, which resulted in a discontinuity in the first derivative of the B-spline series
at the thruster actuation time.

Smoothing of the attitude effectively increased the longitudinal field of view, since more
stars were connected directly. Especially more bright stars were now linked directly to
each other, and not only by chains of measurements between fainter stars (Lacroute
1983). Smoothing had, therefore, two favourable effects: it led to an overall increase
in precision for the astrometric parameters and it permitted a more liberal observing
strategy.

9.4. Rank Deficiency and Minimum Norm Solution

The observations in the great-circle reduction were invariant under a simultaneous shift
of all the star abscissae vi and all the along-scan attitude parameters ψk. This follows
from the fact that the first two (dominant) terms in Equation 9.2 have practically equal
and opposite coefficients. In practice this corresponded to an unknown zero point for the
abscissae. The consequence was that the design and normal matrices in the great-circle
reduction did not have full rank. Under normal circumstances the rank deficiency was
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Figure 9.3. Square root of the star variance versus the star abscissa for a base star solution (top), minimum norm

solution (middle), and for the minimum norm solution after attitude smoothing (bottom). Data from 21 May 1990

10:00–17:20 (day 506).
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Figure 9.4. Averaged auto-covariance function of the star abscissa (based on simulated data for the geometric

solution).

one. During the great-circle reduction the rank deficiency was provisionally eliminated
by forcing the abscissa correction of one star, the so-called ‘base star’, to zero. This
was equivalent to skipping the corresponding column in A and the corresponding row
and column in the normal matrix. The base star was usually a bright star close to one
of the scan circle nodes. This remedy for the rank deficiency was very attractive for its
simplicity, but it resulted in a variance of zero for the base star (Figure 9.3). It had the
same effect as adding the constraint equation c0x = 0 to the system, with c a vector of
length n with all zeroes, except the element corresponding to the base star.

The choice of a particular base star was arbitrary, but it affected the solution and covari-
ance matrix of the great-circle abscissae. For the sphere solution it did not matter which
base star was chosen, if the full covariance matrix is used, because the unknown zero
point was estimated anyhow. However, only the variances were taken into account for
the weighting in the sphere solution, and, in this case, an arbitrary one of them was zero.
This was not very satisfactory. Therefore, the great-circle solution and its covariance
matrix were transformed into a minimum norm solution. The sum of the corrections
to the star abscissa in the minimum norm solution were zero, the covariance matrix
had minimum trace (minimum variance), there were no zero variances and off-diagonal
elements in the minimum norm covariance matrix were smaller (Figure 9.3). Therefore,
the minimum norm variances were preferred instead of the base star variances.

The minimum norm solution was computed from the base star solution by what is known
in geodesy as an S-transform (Baarda 1973, Teunissen 1985). Again, the abscissae
were only shifted, but from the original covariances the column and row average were
subtracted, and the overall average was added. This operation was coded very efficiently
during the Cholesky factorization. In fact, a constraint equation c0x = 0 was added to
the equations, with c an n-vector with all ones, such that Ac = 0, namely c is a basis for
the null space of A.

The covariance matrix of the minimum norm solution was almost a cyclic matrix. A
cyclic covariance matrix is fully described by a single covariance function. Figure 9.4
gives the averaged auto-covariance function of the star abscissae obtained from simu-
lations for the nominal mission. The positive correlation between stars separated by a
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basic angle (58�) and multiples are of course an effect of the two fields of view of the
telescope. The basic angle was chosen not to be a fraction of 360� (see also Volume 2,
Chapter 1, Figure 1.2). If the basic angle had been a fraction of 360� (for example 60�)
the peaks would have been amplified. The value of 58� for the basic angle was the result
of a study (in the mission design phase) on the great-circle rigidity. The correlation is
larger for smaller data sets (which was the case in the revised mission). It was obvious
that the correlations could not be neglected in the sphere solution without some loss of
precision.

9.5. Accuracy of the Great-Circle Solution

The accuracy of the great-circle reduction depended first of all on the quality of the
grid coordinates computed from the image dissector tube data. The standard error in
the grid coordinates was dominated by the photon noise of the individual samples. The
photon noise was Poisson distributed, but since each grid coordinate was computed
from many samples one could assume, according to the central limit theorem, that the
grid coordinates had a normal distribution and were uncorrelated with respect to each
other. Thus the covariance matrix for the grid coordinates Qy, computed by the phase
estimation task, was a simple diagonal covariance matrix. Other errors, like veiling-glare,
projection and other modelling errors, which were smaller, were not represented by Qy

or by the covariance matrix Qx̂ of the least-squares estimator. Therefore, the accuracy
of the great-circle reduction could not be described by only the variances. Analysis of
the residuals ê of the least-squares estimation by statistical tests, given in Section 9.7,
was the other, very important, part of the accuracy description.

Both parts of the accuracy description were verified by tests on simulated data (van
der Marel et al. 1989). Simulated data offered the possibility to study the error in the
estimator, an advantage not available with real data. However, intercomparison of the
results between FAST and NDAC gave another indication of the accuracy of the results.
This was the third part of the accuracy description given in Section 9.8, and it was a
very worthwhile one. In fact, creating the possibility of this kind of comparisons had
been a major reason for assigning two consortia to the data reduction tasks.

Variance of the Star Abscissae

The variances of the star abscissae followed simply from the inverse of the normal matrix.
The star variances were separated into three components:

(1) the variance σ2
obs when only photon noise is taken into account, assuming a perfect

attitude and instrument;

(2) the influence of the attitude determination σ2
att;

(3) the influence of the determination of the instrumental parameters σ2
ins.

The variance of the star abscissae after adjustment was:

σ2
star = σ2

obs + σ2
att + σ2

ins [9.9]

The σ2
obs of a star was computed from the cumulated a priori observation weights of this

star and σ2
ins was the difference of the computed star variances with and without solving
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Table 9.1. Square root of the mean variances in milliarcsec per magnitude class (data from 21 May 1990

10:00–17:20 = day 506). The table shows the contributions of the observational errors (σobs), the instrument

(σins) and the attitude (σatt) to the total standard error of the star abscissa (σstar) for the geometric and

smoothed solutions.

B nB σobs σins σatt σstar σatt σstar

(mag) (geometric) (smoothed)

3–4 1 0.17 0.36 2.00 2.03 1.30 1.36

4–5 5 0.40 0.33 2.06 2.12 1.33 1.43

5–6 26 0.83 0.33 2.37 2.53 1.47 1.72

6–7 96 1.07 0.29 2.08 2.36 1.32 1.72

7–8 245 1.70 0.30 2.16 2.76 1.31 2.16

8–9 552 2.77 0.31 2.21 3.56 1.34 3.09

9–10 423 3.53 0.30 2.49 4.33 1.37 3.80

10–11 111 4.11 0.30 2.49 4.81 1.38 4.35

11–12 28 6.02 0.31 3.55 6.99 1.68 6.25

12–13 6 6.63 0.33 3.09 7.32 1.79 6.88

all 1493 3.01 0.30 2.34 3.82 1.36 3.31

for instrumental parameters. Finally σ2
att was a derived quantity, computed from the

above mentioned variances.

In Table 9.1 the square root of the average of the minimum norm variance per magnitude
class is given for the data set of Figure 9.3. The error σobs, and therefore σstar, were
clearly magnitude dependent: σobs varies between 0.1 mas for very bright stars and
3.2 mas for the 10 mag, and was even larger for 12–13 mag stars. The influence of the
attitude and influence of the instrument were more or less the same for each magnitude
class. The influence of the instrumental parameters (0.3 milliarcsec) was very small
compared to the influence of the attitude. This value was very sensitive to the length of
the reference great-circle set (Figure 9.13). It was a little larger than expected because
the reference great-circle sets in the revised mission were shorter. The improvement
brought by attitude smoothing is striking. The influence of the attitude was reduced
very significantly (2.4 milliarcsec for the geometric solution and 1.4 milliarcsec in the
smoothed solution), resulting in better star variances (Figure 9.3). The improvement
affected the brighter stars in particular (Figure 9.5). The error in the fainter stars was
still dominated by photon noise.

Attitude Smoothing

Figure 9.6 gives the variances of the attitude parameters for the example of Table 9.1.
The differences between the geometric and smoothed attitude are shown in Figure 9.7.
The influence of the attitude, σatt in Equation 9.9, was reduced considerably by smooth-
ing. The improvement was a function of the number of attitude parameters needed to
represent the attitude. In Table 9.1 the mean standard error of the star abscissae was
given for the optimum number of B-splines. In the unrealistic, but informative case of
a perfectly known along-scan attitude, the standard error of the star abscissae is equal
to σobs (neglecting the instrument).

The optimum number of B-splines was initially calculated by simulation experiments
with the great-circle reduction software (van der Marel 1985). In Figure 9.8 the mean
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Figure 9.5. Star abscissae improvement by attitude smoothing (data from 21 May 1990 = day 506).

Figure 9.6. Square root variance of the geometric (dots) and smoothed (circles, lower accumulation of symbols)

attitude. Vertical lines are drawn at thruster actuation times. The time is given in units of T4 = 2.133 . . . s (data from

21 May 1990 = day 506).

standard error (measurement induced error), the modelling error in the smoothed
attitude, the rms error in the estimated attitude (estimation error) and the unit weight
variance (Equation 9.10) are plotted versus the number of attitude parameters. The
rms error in the estimated attitude and star abscissa reached a minimum at some point.
With a smaller number of B-splines the modelling error became significant, for a larger
number the inherent smoothness was not sufficiently exploited.

The rms errors in the estimated star abscissa could not be determined with real data.
The only information available to determine the optimum number of B-splines with real
data are statistical tests based on the test statistics in Equation 9.10–9.12, and on visual
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Figure 9.7. Differences between the geometric and smoothed attitude (data from 21 May 1990 = day 506).

Figure 9.8. Attitude improvement by smoothing as function of the number of attitude parameters per circle (based on

simulations).

inspection of the differences between the geometric and smoothed attitude for selected
great-circle sets (Figure 9.7).

Figure 9.9 gives the square root of the average variance of the active star abscissae and
the along-scan attitude during the mission. The improvement for the along-scan attitude
by the attitude smoothing is striking. There is quite a significant number of great circles
with a larger average standard error for the star abscissae and along-scan attitude. This is
mostly for short great-circle sets, which had some difficulty in estimating the instrument
parameters. This is also visible in the top plot of Figure 9.9, where the dots give the
square root of the average of σ2

ins of Equation 9.9.
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Figure 9.9. Average standard error (square root of the average variance) in star abscissae after smoothing during

the mission (top, crosses), influence of the solution of instrument parameters (top, dots), average standard error of

along-scan attitude parameters (bottom) after smoothing (dots) and geometric (crosses) solutions during the mission.

Projection Error

The projection error on the reference great circle, �
00

ik of Equation 9.4, depended on
the size of the catalogue error ∆ri and star mapper attitude error ∆θk and ∆φk. During
the first treatment these quantities could be rather large due to the quality of existing
star catalogues. Therefore, it was necessary to iterate the great-circle reduction after
the sphere solution, making better values for ri available. The attitude reconstruction
was repeated too, resulting in better values for θk and φk. After at most two iterations
the error in ri was 2–4 mas and could be neglected, but the error in θk, φk remained of
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Table 9.2. Predicted projection errors (in milliarcsec) during first treatment (assuming catalogue errors of

σS = 1.5 arcsec) and in the iterations (assuming σA = 0.1 arcsec and negligible σS).

First treatment Iteration

rms max rms max

Field coordinate 12.0 72.3 0.9 6.3

Attitude 6.0 72.3 0.8 6.3

Star 10.1 72.3 0.6 3.3

Figure 9.10. Projection error in the star abscissae. The nodes are near 70� and 250�

the order of 50–100 mas, due to star mapper photon noise, and could not be improved
further.

In Table 9.2 the projection error effect on the field coordinates, star abscissa and along-
scan attitude are given for a typical reference great circle. The results are from analytic
formulae, and were confirmed by extensive simulations (van der Marel 1988). The
projection error depended also on the size of the partial derivatives. The projection
errors were large when the inclination of the scanning direction with respect to the
reference great circle was large. Therefore the projection errors were large near the
nodes of the scan circles. However, the projection error effect on the attitude and star
parameters averaged out at locations with a uniform scanning. This happened exactly
on the nodes of the scan circles. Therefore maximum projection errors were expected
near the nodes, but not on the nodes. Figure 9.10 is a scatter diagram of the projection
error effect on the star abscissae for a typical first treatment. The predicted maxima
near the nodes are clearly visible.



Great-Circle Reductions 163

Figure 9.11. Medium-scale residuals of a third degree polynomial representation of the non-chromatic field-to-grid

transformation. The contours range from +1 mas (solid line) to −0.5 mas (broken, dotted line). See also Figures 10.14

to 10.16.

9.6. Instrument Parameters

The basic angle distortion and large-scale field-to-grid transformation is the third group
of parameters which was estimated during the great-circle reduction. The field-to-
grid transformation was modelled by a polynomial in several variables. The polynomial
degree was 3 or 4 for the non-chromatic terms and 1 for the chromatic terms. Figure 9.11
shows a grid map of the mean residuals over the first 30 months of reduced data, where
third or fourth degree polynomials were adopted to describe the non-chromatic part of
the field-to-grid transformation.

A new set of instrument parameters was normally estimated for each great-circle reduc-
tion. However, since the highest order parameters were assumed not to change with
time, these parameters were fixed at their average values. The choice and time evolution
of the instrument parameters is described in more detail in Chapter 10 and in Volume 2,
Chapter 10. Here some of the implementation aspects are described briefly.

The choice for a power series was a little arbitrary. At the time of implementation
there were no numerical or functional reasons for choosing different types of functions.
However, there were signs from the real data that some refinements were necessary.
A disadvantage of power series was certainly the large correlation between some of
the estimated parameters. In any case, not all of the instrumental parameters can be
estimated equally well. The so-called ‘constant term’ (g00 in the NDAC notation), and
the ‘constant chromaticity’ (c00), could not be estimated at all from a single reference
great-circle set. They were omitted from the great-circle equations and determined
during the sphere solution (see Chapters 11 and 16).
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In FAST, it was shown that the variances of stars and attitude determinations could
be improved when less instrumental parameters were taken as unknown and replaced
by fixed pre-determined values. These were obtained by computing the mean of the
coefficients determined by the great-circle reduction during earlier iterations for every
calibration period as defined in Section 4.2. In addition, the variations of the basic angle
were modelled by a linear function of time. The analysis of the instrumental parameters
showed that a fourth-order polynomial gave a significantly better representation of the
field-to-grid transformation as shown in Figure 9.11, and that the third and fourth degree
terms were very stable throughout the mission, but were rather strongly correlated with
certain first and second degree terms.

From these considerations, the following scheme was adopted by FAST. While the
first treatment of data was performed using third-order polynomials, the next iteration
was performed with fourth-order formulae. Then, in further iterations, the calibrated
third and fourth degree coefficients as well as the chromatic terms were considered as
known, reducing by 11 the number of instrumental unknowns. For short reference
great circles (1 or 2 rotations), the terms proportional to y, xy and y2 (where x is
along the scan and y normal to it) were difficult to estimate because the inclination was
small, the risk being large variances for star parameters and even a singular system of
equations. They were then taken from the calibration file. In case of even shorter data
sets, no instrumental parameters were computed except the coefficients for x and x2;
all the others, including the basic angle, being taken from the calibration. Finally, when
thermal disturbances occurred (see Chapter 2), the basic angle was not stable and its
variations were represented by a linear function of time.

Figure 9.12 gives the number of instrument parameters which were solved by the FAST
consortium during the final iterations as a function of the length of the great-circle
set. Also plotted are the average standard error of the stars and the influence the
instrument parameter estimation had on the standard error of the stars. In shorter
great-circle sets less instrument parameters were solved than in longer sets. For the
longer sets, which had the power to estimate the more difficult instrument parameters,
fewer instrument parameters were replaced by values taken from the calibration. Even
despite this strategy, the effect of the instrument parameter solution on the standard
error of the star abscissae was more pronounced for the shorter reference great-circle
sets.

9.7. Analysis of the Least-Squares Residuals

The least-squares adjustment can be interpreted as the orthogonal projection of the m
dimensional vector of observations y (2 IRm) onto the vector ŷ = A x̂ in the n dimensional
linear manifold spanned by the columns of A (the range space). The metric of IRm is
defined by the weight matrix Q−1

y of the observations (which is in fact a metric tensor).
The adjusted observations ŷ and least-squares residuals ê are orthogonal, so the residual
sum of squares E = ê0Q−1

y ê is a minimum. Moreover, the residual sum of squares has
a χ2 distribution with m − n degrees of freedom if y has a normal distribution with
N (Ax, Qy). Dividing E by the degrees of freedom leads to the Fisher test statistic with
m − n and 1 degrees of freedom, or unit weight variance:

F =
E

m − n
=

1
m − n

X

i

X

k

e2
ik

σ2
ik

' F (m − n,1) [9.10]
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Figure 9.12. Number of instrument parameters solved during the final iterations versus the length of the great-circle

sets (top), and the average standard error of the stars (dots) and the influence of the instrument σins (+) as a function

of the length of the great-circle sets (bottom).

with eik the least-squares residual of star i in frame k and σik the standard error of the
observation. The expected value of F is one. The null hypothesis H0 that the model
of Equations 9.5 and 9.7 and covariance matrix Qy were correct, and there were no
outliers, was verified by hypothesis testing. The test was:

reject H0 if F > Fα(m − n,1) [9.11]

with Fα(m−n,1) the critical value for the test with level of significance α, the probability
that the test was rejected wrongly if H0 was true.

Figure 9.13 gives the value of F during the mission. The values for F were larger for
smoothing. Almost every value for the smoothed solution exceeded the expected value
of 1 significantly, resulting in a rejection of the test in Equation 9.11. For a typical
reference great-circle set the critical value was F0.001(20 000,1) = 1.03. The rejections
were a result of the modelling error in the attitude. The B-spline series was only able to
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Figure 9.13. Unit weight variance F (top) and rms error of the residuals of the grid coordinates (bottom) during the

mission (crosses refer to the geometric solution, dots to smoothing).

describe the attitude up to the 1 milliarcsec level. Taking these into account, the tests
were almost always accepted. Despite all this the F test values were close to one. This
meant that the variances of Table 9.1 were representative. For this particular data set
the F test values were 1.048 and 1.076 respectively for the first treatment, and 0.9688
and 0.9974 for the final iteration given in Figure 9.13.

The power of the test in Equation 9.11 was not very good. A few small errors in the
observations did necessarily lead to a rejection of this test. Neither did it provide an
indication of what problems caused rejection. Fortunately other more powerful tests
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could be used to identify specific problems. The quality of the adjusted star abscissae
was checked by a Fisher test statistic similar to Equation 9.10:

Fi =
1
si

X

k

e2
ik

σ2
ik

with si =
X

k

σ2
eik

σ2
ik

[9.12]

with si the degree of freedom, or redundancy, of star i, computed from the variance of
the least-squares residuals σ2

eik
. Fi has a Fisher distribution with si and 1 degrees of

freedom, which could be used in the test of Equation 9.11. Also used was Fi /F instead
of Fi . Fi /F has a Fisher distribution with si and m − n degrees of freedom. This test was
indicative of modelling problems related to specific stars, e.g. single stars which turned
out to be double, veiling-glare, etc.

The star-by-star test was the main instrument for the selection of FAST active and
passive stars. The static criteria which were applied during the first treatment were
gradually replaced by the results of this test. After every external iteration the results of
the star-by-star test from all great-circle sets participating in the iteration were collected.
Those stars which had many rejections during the great-circle treatment were then
selected as passive stars for all great-circle sets in the next iteration. Passive stars which
had very few rejections, were selected as active stars for the next iteration. In addition to
the global list of active and passive stars, another list was maintained in which stars were
made passive for specific great-circle sets. In this way, an occasional star outlier could
be accommodated. During the first treatment about 300 to 400 passive stars per great-
circle set were selected using static criteria, and up to 2 per cent of a priori unsuspected
active stars were flagged. In the final iteration, about 100 passive stars per set were left
(Figure 9.2), and there were no serious rejections of the test of Equation 9.12.

Statistical tests similar to Equation 9.12 were derived to specifically check the frame-
by-frame attitude and B-spline smoothing by altering the summation in Equation 9.12.
The test on the B-spline intervals was indicative of the modelling error in the smoothed
attitude caused by insufficient B-spline parameters. This test was used within FAST
to build a list of intervals which needed additional B-spline parameters, or should be
excluded from the reductions completely, for instance because the satellite had been hit
by small particles, or for other reasons. Some periods had so many new B-splines that
effectively a frame-by-frame attitude representation was used. Although this procedure
was automated by FAST to some extent, manual intervention was necessary on several
occasions. The advantage of using a list was that this work did not have to be repeated
in subsequent iterations.

The summation in the test of Equation 9.12 could be restricted to a single observation,
which resulted in the test statistics with standard normal distribution:

ēik =
eik

σeik

~ N (0, 1) [9.13]

A grid coordinate error was suspected if jēikj > Nα(0, 1). Using this test the grid
coordinates were inspected one by one. This procedure is a common technique in
geodesy and is known as ‘data snooping’ (Baarda 1968). The major problem with these
techniques was a lack of robustness caused by smearing and masking effects. Smearing
was caused by the correlation between the least-squares residuals. A single outlier in the
data could result in the rejection of several data snooping hypotheses. Similarly, a large
outlier may mask smaller outliers, which could only be found after the large outlier had
been removed. Therefore, whatever the procedure for detection and correction was, it
had to be iterated: i.e. the most evident cases were tackled first, then a new solution
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Figure 9.14. Intercomparison of the FAST and NDAC abscissae after attitude smoothing (data from 14 May 1990

0:04–5:08 = day 499).

was computed and the residuals, or testing variates, were inspected again. The process
converged if in later iterations more and more subtle cases were recognised as errors.
This procedure can be automated. This was for instance implemented by Kok (1985)
in his iterated data snooping procedure, or by Eeg (1986) in his iteratively re-weighted
least-squares, which was the method used by NDAC.

9.8. Intercomparisons

Several identical sets were reduced by NDAC and FAST for comparison purposes.
Figure 9.14 shows the difference in abscissae for a typical comparison set halfway
during the reductions, just after the input catalogue had been improved for the first
time. Passive stars, which had differences up to several hundred milliarcsec, were
removed from Figure 9.14. These differences were caused by the different treatment
of double stars in the two consortia. In the FAST great-circle reduction the weighed
mean of the first and second harmonic of the grid phase were used as the observation.
In NDAC only the first harmonic was used (see Chapter 5). This affected the double
stars in particular.

The comparison set shown in Figure 9.14 is one of 15 comparison sets—with specific
difficulties—which were tested during the mission. The difficulty with the set in Fig-
ure 9.14 was an eclipse, but this had no adverse effects in this case. Actually, this
comparison set was an example of a normal set. Other comparison sets sometimes
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Table 9.3. Summary of projection error differences resulting from the use of different star catalogues for the

NDAC great-circle reduction. All values are given in milliarcsec. The rms errors for the two catalogues were

270 milliarcsec (Hipparcos Input Catalogue) and 185 milliarcsec (partially improved working catalogue).

Abscissa Instrument

rms min max (corner)

Set 1 (all stars) 2.68 –40 +25 0.3

Set 1 (active stars) 1.56 –25 +8 0.5

Set 2 (all stars) 2.94 –70 +10 0.4

had much larger differences, with large systematic effects. Often a very significant 6th
harmonic was found, which was due to the basic-angle design, one of the periods for
which the great circle was not very robust. This 6th harmonic could be triggered by
almost anything, for example a serious outlier in the data, or short great-circle sets in
combination with estimating too many instrument parameters. Also in good comparison
sets this harmonic was present, as can be observed from the averaged auto-covariance
function in Figure 9.14. This led to experiments in the sphere solution (Chapters 11
and 16) whereby it was tried to estimate a 6th harmonic for each great-circle set.

The rms difference for good comparison sets was usually 3–5 milliarcsec, with maximum
errors up to several tens of milliarcsec. The rms differences seemed to be too large
considering that both consortia had reduced the same data. The rms difference was of
the same order as the standard error of the star abscissae. Also, the correlation between
the abscissa differences, given in Figure 9.14, was very similar to the correlation function
of the great-circle abscissae in Figure 9.4 (computed from simulated data). In fact, two
completely independent measurements would have resulted in differences which were
not much larger. This requires some explanation. The first reason was that the consortia
did not really use the same data because NDAC did not use the second harmonic of the
grid phase. This mainly affected the double and multiple stars. There was a variable
bias between the first and second harmonic which also affected the single stars and
especially the calibration of the instrument (Schrijver & van der Marel 1992).

The second reason was that the projection errors were not the same because different
working catalogues and star mapper attitudes had been used. The rms difference in
the star catalogue used for this particular example was 0.1–0.3 arcsec. The effect was
illustrated by comparing two runs of the same consortium on the same data with different
catalogues, but otherwise completely identical. The results are given in Table 9.3. An
error in a single catalogue position would also affect the other stars due to the smearing
effect of the least-squares estimation. The covariance function was, therefore, similar
to the covariance function of the abscissae.

The third reason was that different sets of observations and stars participated in the
actual least-squares adjustment. In FAST the so-called passive stars were fitted in later
without affecting the attitude. Outliers in the observations were treated differently. In
NDAC the great-circle reduction was iterated several times with some of the observations
re-weighted. FAST used data snooping for the grid coordinates and variance tests for
the stars. When an active star was rejected by the statistical tests it was made passive in
the next external iteration. The effect of using passive stars was studied by two runs on
the same data with different sets of stars. The results are given in Table 9.4. A fourth
reason is that in the attitude smoothing the number of B-splines and the location of their
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Table 9.4. Effect on the abscissa differences when different sets of stars were selected (FAST active star set

versus all stars). All values are given in millarcsec.

Abscissa Instrument

rms min max (corner)

NDAC 2.32 –42 +10 0.4

FAST (geometric) 1.99 –10 +9 0.3

FAST (smoothing) 1.56 –5 +5 –

Table 9.5. Normalised standard errors for great-circle reductions with weighted phase, first harmonic and

second harmonic only.

Weighted First only Second only

Geometric solution 1.019 1.017 1.030

Smoothed solution 1.043 1.040 1.043

WZ

Figure 9.15. Difference between the FAST and NDAC instrument description (first harmonic).

ZW

Figure 9.16. Difference between the instrument for the first harmonic and second harmonic.
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knots were different. Also, the estimation procedures in FAST and NDAC were not the
same.

The instrument parameters agreed up to 1.5 mas in the corners of the field of view
when FAST used the first harmonic of the grid phase. The only significant differences,
i.e. more than two times the standard error, were in the terms g01 and g30 (+1.4 and
−0.94 mas, respectively, at the upper left corner of the field of view, see also Figure 9.15).
When FAST used the weighted phase, which was their standard approach, the agree-
ment was lost between the FAST and NDAC instrument parameters. This did not mean
that the weighted phase is worse, it only meant that the field-to-grid transformation was
different. In fact, test runs with only the second harmonic showed that it is good data
(Table 9.5). The difference in instrument parameters for the first and second harmonic
are shown in Figure 9.16. The differences in the corners were 13 mas.

9.9. Conclusions

In the previous sections results of the great-circle reductions have been given based on
simulations, comparisons, or the software’s internal accuracy description. The accuracy
of the software’s internal accuracy description has been verified in every possible way.
A final test was the next reduction step: the sphere solution. Here the abscissae
from the great-circle reduction with their minimum-norm standard error were used
as observations. Statistical tests, like those in Equation 9.12, were used to verify the
abscissae observations and the stochastic model. Considering the fact that at the level
of the sphere solution abscissae from the same great-circle set were assumed to be
uncorrelated, which they were not (Figure 9.4), it turned out that the great-circle
software gave a very fair description of the accuracy.
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