
11. SPHERE SOLUTION

The sphere solution combined the star abscissae obtained in the great-circle
reductions (Chapter 9) into the positions, parallaxes and proper motions of the
stars, expressed in a globally coherent coordinate system. It consisted of two
processes: (1) the determination of the abscissa zero points of all the reference
great circles, which was the sphere solution proper; and (2) the determination
of the astrometric parameters of individual objects. While the first process
required a simultaneous least-squares solution of a large number of stars,
which must all be consistent with the single-star model, the second process
could be performed sequentially using several different models as appropriate
for each object. In this chapter the basic observation equation is derived and
the numerical methods of solution used by FAST and NDAC are outlined.
The final section of the chapter deals with the ‘rank deficiency problem’ and
reports some numerical experiments to study this problem.

11.1. Introduction

The purpose of the sphere solution was to calculate, from the abscissae determined by
the great-circle reductions, the astrometric parameters of the stars: both components
of position, both components of the proper motion, and the parallax. This chapter
provides a general formulation of this process. In practice the successive sphere solu-
tions performed by the FAST and NDAC consortia differed in many details, especially
concerning the use of ‘global’ parameters for the modelling of instrument chromaticity
and the harmonic components of the abscissa errors; these detailed aspects as well as
the numerical characteristics of the successive solutions are covered in Chapter 16.

In order to take advantage of the symmetry of the nominal scanning law with respect
to the ecliptic, all computations in the FAST Consortium were made in ecliptic co-
ordinates. In the NDAC Consortium, equatorial coordinates were used throughout.
This difference is immaterial for a general exposition of the sphere solution and largely
disappears when vector algebra is used in its formulation. When a reference to the
celestial coordinates is nevertheless needed, ecliptic coordinates (λ, β) will be used, and
the ecliptic is taken to be the fundamental plane. To obtain the corresponding equations
and conventions according to NDAC it is only necessary to substitute (α, δ) and the
equator. The generic celestial triad [ x y z ] may thus be taken to mean either the ecliptic
or equatorial triad. The transformation between these two systems is completely defined
by the value of the obliquity of the ecliptic (�), for which the IAU (1976) value at epoch
J2000 was adopted (see Table 12.1).
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The great-circle reductions determined the one-dimensional coordinates, or abscissae,
of the stars along a number of different reference great circles ( j). In an absolute sense,
the abscissa is defined as the angle v, as seen from the designated pole of the reference
great circle, from the ascending node of the reference great circle on the ecliptic to the
topocentric coordinate direction of the object (Figure 11.1). It should be noted that the
abscissa, being defined in terms of the coordinate direction of the object, is not affected
by gravitational light deflection and stellar aberration; these effects, whose computation
does not require an accurate astrometric knowledge of the object, were removed in the
great-circle reductions.

In principle, therefore, the astrometric parameters of a given star i can be computed
on the basis of a geometrical model of its motion, using the abscissa values vji as
‘observations’. The only additional data required are the times of observation (t ji ),
the corresponding reference great-circle poles (R j ), and the barycentric locations of the
satellite (b j). This process, known as the ‘determination of astrometric parameters’,
can clearly be made on a star-by-star basis. However, it requires that the abscissae
are actually available in the form described above, i.e. as the absolute angles from the
ecliptic to the object, as measured on a number of great circles.

In reality the abscissae obtained in the great-circle reductions do not satisfy this con-
dition. The main problem is the arbitrary origin of the abscissae introduced in each
great-circle reduction. This means that the abscissae on a given reference great circle
are measured, not from the ecliptic, but from some other, in principle unknown origin.
Consequently a set of corrections c j need to be added in order to convert the abscissae
into the absolute quantities required for the determination of astrometric parameters.
These corrections can only be determined by simultaneously considering a large num-
ber of stars, and explicitly using the circumstance that the same correction applies to
all the abscissae on the same reference great circle. However, even in this process, the
corrections c j can only be determined in such a way that the corrected abscissae express
the angles from a certain fundamental plane, which need not be exactly the ecliptic,
nor even fixed with respect to the ecliptic; thus a basic indeterminacy of the celestial
reference frame remains after the sphere solution.

The need to determine the abscissa origins is however not the only reason for doing
a ‘sphere solution’ in which the measurements of a large number of stars scattered
over the whole sphere are considered in a single solution. There are other, more
subtle effects causing systematic shifts in the abscissae which cannot be eliminated
in the great-circle reductions, but may be determined in the sphere solution, due to
the additional constraints introduced by the stellar astrometric model. These effects
include the component of instrument chromaticity that is constant in both fields of view,
representing a colour dependence of the zero points c j . Furthermore, some harmonic
components of the abscissa error, notably the sixth harmonic, are more accurately
estimated in the sphere solution than in the great-circle reductions. By including such
additional unknowns in the sphere solution, their effects on the ‘observed’ abscissae
are eliminated and will not propagate into the subsequent determination of astrometric
parameters in the form of colour or position dependent systematic errors.

Since the sphere solution is constrained by the stellar astrometric model describing the
coordinate direction in terms of the five astrometric parameters, it is important that this
model actually applies to all the stars considered jointly in the sphere solution. Resolved
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Figure 11.1. The (nominal) abscissa v is defined as the angle, as seen from the pole R of the reference great circle,

from the ascending node P on the fundamental plane (EE = equator or ecliptic) to the coordinate direction of the object,

u. The vector triad [ P Q R ] defines the great-circle reference frame.

double stars, astrometric binaries showing curved motion, and other peculiar objects,
require more complex models and should therefore not be used in this process.

What is here called the sphere solution can accordingly be divided into two successive
processes: (1) the sphere solution proper, which primarily aims at the accurate de-
termination of the abscissa zero point corrections c j by means of a joint least-squares
solution for a carefully selected subset of the Hipparcos stars (known as the ‘primary
reference stars’); and (2) the application of these corrections to all the abscissae and the
subsequent determination of the astrometric parameters on a star-by-star basis—this
being no longer restricted to the primary reference stars but applicable to all objects.

These processes are equivalent to the second and third steps of the so-called ‘three-step
method’ outlined in Section 4.1. In the FAST Consortium they were executed as two
separate tasks, while in NDAC they were integrated into a single task. One advantage
of the FAST approach is that the second task can be made very flexible and include a
variety of object models in addition to the standard five-parameter single-star model.
In the NDAC Consortium all stars for which the standard model was not adopted were
treated by special off-line software, sometimes completely side-stepping the three-step
method, as in the case of resolved double and multiple stars (Chapter 13).

In their mathematical formulation the two steps—the sphere solution proper and the
determination of astrometric parameters—are intimately connected and it is convenient
to present them together. For the sake of brevity, the indices j (for the reference great
circles) and i (for the stars) are suppressed where not explicitly needed.
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11.2. The Reference Great-Circle Frame

The abscissae and ordinates used in the great-circle reductions are spherical coordinates,
analogous to the right ascension and declination, defined with respect to a coordinate
triad R which may be called the reference great-circle frame. Nominally the great-circle
frame is uniquely defined by the celestial coordinates (λR, βR) of the reference great-
circle pole and the fundamental celestial plane (ecliptic or equator). Formally, it may
be represented by the vector triad R = [ P Q R ], where:

R = x cos βR cos λR + y cos βR sin λR + z sin βR

P = hz × Ri

Q = R × P

[11.1]

The topocentric coordinate direction of the star can be expressed in the great-circle
frame as:

u = R

 cos r cos v
cos r sin v

sin r

!
[11.2]

where (v, r) are the abscissa and ordinate of the star (Figure 11.1). The topocentric
coordinate direction of a star may be computed from its astrometric parameters as
described in Volume 1, Section 1.2.8; given the pole of the reference great circle, the
abscissa is then obtained by means of Equations 11.1 and 11.2. It is the purpose of the
sphere solution to compare this calculated abscissa with the observed abscissa resulting
from the great-circle reduction, in order to improve the astrometric parameters.

11.3. Observation Equation

The observation equation expresses the difference between the observed and calculated
abscissa, ∆vji = vobs

j i − vcalc
j i , in terms of the different sources of error. The observation

equation is in reality the same for the sphere solution proper and for the determination
of the astrometric parameters; the processes differ in how the different terms are treated
in the solution of the equations. Presently six kinds of error terms are considered:

• errors in the astrometric parameters;
• orientation errors in the reference great-circle frame;
• other (‘local’) errors on the great-circle level;
• global errors;
• grid-step errors;
• random noise.

These are discussed in subsequent subsections.

Errors in the Astrometric Parameters

The standard model of stellar motion (Volume 1, Section 1.2.8) gives the topocentric
coordinate direction at time t as:

u = h r(1 + ζt) + pµλ�t + qµβ t − bπ /A i [11.3]
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where:
r = the barycentric direction of the star;

p = hz × ri = the direction of +λ at the star;

q = r × p = the direction of +β at the star;

(µλ�, µβ) = the components of the proper motion;

π = the parallax;

b = the barycentric position of Hipparcos at time t;

A = the astronomical unit;

ζ = VRπ /A, where VR is the radial velocity of the star.

[ p q r ] is the normal triad at r relative to the ecliptic coordinate system. All quantities
except b refer to the epoch t = 0 (J1991.25). b, A and VR are regarded as known; other
quantities are uniquely defined by the five astrometric parameters λ, β, π, µλ�, µβ , since:

r = x cos β cos λ + y cos β sin λ + z sin β [11.4]

The determination of the astrometric parameters proceeds by successive differential
corrections to a set of initial values. To compute the effects of small changes in the
astrometric parameters it is then acceptable to ignore ζ and the normalisation brackets
in Equation 11.3, yielding:

∆u = p(∆λ� + t∆µλ�) + q(∆β + t∆µβ) − bA−1∆π [11.5]

On the other hand, Equation 11.2 gives:

∆u = m∆v� + n∆r [11.6]

where ∆v� = ∆v cos r and:

m = hR × ui, n = u × m [11.7]

are the unit vectors in the directions of +v and +r, respectively. [ m n u ] is the normal
triad at u relative to R. Equating ∆u in Equations 11.5 and 11.6, and invoking scalar
multiplication by m and n, gives:

∆v� = m0p(∆λ� + t∆µλ�) + m0q(∆β + t∆µβ) − m0bA−1∆π [11.8a]

∆r = n0p(∆λ� + t∆µλ�) + n0q(∆β + t∆µβ) − n0bA−1∆π [11.8b]

Equation 11.8b is not used. After multiplication by sec r, Equation 11.8a gives the
relevant terms in the observation equation, or:

vobs − vcalc = � � � + d0∆a [11.9]

where ∆a = (∆λ�, ∆β, ∆π, ∆µλ�, ∆µβ)0 is the column matrix of differential corrections
and d is the column matrix of dependencies:

d1 = m0p sec r

d2 = m0q sec r

d3 = m0b A−1 sec r

d4 = m0p t sec r

d5 = m0q t sec r

[11.10]
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Orientation Errors in the Reference Great-Circle Frame

Section 11.2 defined the nominal reference great-circle frameR, having its pole precisely
at the nominal coordinates (λR , βR) and the abscissa origin (P) exactly at the intersection
with the ecliptic. Because of the arbitrary abscissa zero point adopted in the great-circle
reduction, and because of errors in the attitude angles and stellar coordinates used as
input to the great-circle reduction, the object was in reality ‘observed’ with respect to a
slightly different triad R̃ = [ P̃ Q̃ R̃ ], which shall be called the actual great-circle frame.
The topocentric coordinate direction of the star can be expressed in this frame as:

u = R̃

 cos r̃ cos ṽ
cos r̃ sin ṽ

sin r̃

!
[11.11]

where (ṽ, r̃) are the abscissa and ordinate in the nominal great-circle frame. The
direction cosines in Equations 11.2 and 11.11 are related through the matrix equation:

R̃0u = (R̃0R)R0u [11.12]

where R̃0R is a 3 × 3 orthogonal matrix.

The relation between the nominal and actual great-circle frames can be represented by
a vector � (unique for each great-circle reduction) such that a triad initially aligned with
R will become aligned with R̃ after rotation through the angle θ = j�j about the unit
vector h�i. In the small-angle approximation, neglecting terms of order θ2, this can be
written:

R̃ = R + � × R [11.13]

and the transformation matrix in Equation 11.12 becomes:

R̃0R = I + (� × R)0R =

 1 θR −θQ

−θR 1 θP

θQ −θP 1

!
[11.14]

Here, I is the 3 × 3 identity matrix and θP, θQ, θR are the components of � in either
great-circle frame.

Inserting Equation 11.14 in 11.12 and expanding to first order in the small angles gives:

ṽ = v + (θP cos v + θQ sin v) tan r − θR [11.15a]

r̃ = r − θP sin v + θQ cos v [11.15b]

At this point two simplifications are introduced:

(1) since the ordinate was not estimated in the great-circle reduction, Equation 11.15b
need not be considered;

(2) since jrj <~ 2 degrees, due to the limited time interval of the great-circle reduction
and the choice of the reference great circle close to the mean scanning plane during
that interval, the components θP and θQ contribute much less than θR to the
difference between the nominal and actual abscissa in Equation 11.15a, and are
ignored.

(1) implies a small loss of information, but involves no approximation compared with
Equation 11.15; in contrast, (2) causes an approximation error in the abscissae which
could amount to a few milliarcsec (since θP and θQ may be of the order of the accuracy
of the transverse attitude, or 0.1 arcsec). It was assumed that the outer iteration loop
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of the main Hipparcos reductions—involving the attitude determination, great-circle
reductions, and the sphere solution—eliminates at least the systematic part of these
errors. The consequences of this approximation are further discussed in Section 11.7.

As a result of (1) and (2), Equation 11.15 simplifies to ṽ = v− θR and θR can be identified
with the zero-point correction c j that must be added to the observed abscissa (in the
actual great-circle frame) in order to be compared with the calculated abscissa (in the
nominal frame). The corresponding term in the observation equation is, therefore:

vobs − vcalc = � � � − c j [11.16]

Local Errors on the Great-Circle Level

Apart from the orientation errors of the great-circle frame, the abscissae may be subject
to various distortions and systematic displacements, which vary from one great-circle
reduction to the next. This kind of ‘local’ error was not originally foreseen in the
Hipparcos data reductions, and are therefore not described in the pre-launch documen-
tation (Perryman et al. 1989 Volume III). Experiments with the real data, in particular
FAST/NDAC comparisons made at the great-circle level and the analysis of residuals
from several provisional sphere solutions, clearly demonstrated that such effects existed.
The most important one seemed to be a periodic error in the abscissa, with a period of
60�, and with essentially random amplitudes and phases in the different great-circle re-
ductions. The source of this could simply be the relatively low rigidity of the great-circle
reductions to the sixth harmonic of the abscissae, due to the proximity of the basic angle
(58�) to the period of that harmonic. The ‘local’ sixth harmonic may be introduced
into the observation equation in the form of the following two terms:

vobs − vcalc = � � � + Cj cos 6(v − v�) + Sj sin 6(v − v�) [11.17]

where v� is the abscissa of the Sun, which for historical reasons was taken as the origin
for the phase of the harmonic errors.

Additional local errors, especially depending on colour, were also detected and taken
into account in some of the sphere solutions (see Section 16.3).

Global Errors

Global parameters Γk, k = 1 . . . NΓ were primarily introduced in order to take into
account instrumental effects which could not be resolved at the level of the great-
circle reductions. In the various sphere solutions they varied in kind and number, up
to NΓ ' 20, as the physical significance and mathematical form of the effects were
explored.

By far the most important instrumental effect requiring global treatment was the so-
called ‘constant chromaticity’. In the Hipparcos nomenclature, this was the average
value of the displacement of the image of a star of given colour index with respect to
the image of a star of colour B − V = 0.5 mag. The displacement was measured in the
direction of scanning, and the average taken over both fields of view. Assuming that the
displacement was proportional to the difference in colour index, the relevant term in
the observation equation was:

vobs − vcalc = � � � + (B − V − 0.5)Γchrom [11.18]
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It was however found that the chromaticity varied (linearly) with time, requiring one
more global parameter for its representation, and that the variation with colour index
was perhaps not linear, requiring yet another parameter. The actual parameters used
by FAST and NDAC in their successive sphere solutions are described in Chapter 16.

Another kind of global instrumental effect was foreseen as a consequence of the varying
thermal impact on the payload. Under the nominal scanning law the solar illumination
varied periodically with the spin phase relative to the Sun, i.e. the heliotropic angle
Ω (see Figure 7.3). Consequently it was assumed that systematic thermal variations
could be modelled as a periodic function in Ω. Systematic errors in the abscissae
caused by such variations must be periodic in v − v�, if v� is the abscissa of the Sun.
This reasoning lead to the introduction of global parameters with harmonic coefficients
cos n(v − v�) (n = 1 . . . 6) and sin n(v − v�) (n = 2 . . . 6). The term containing sin(v − v�)
was rejected a priori, as it would have a very strong correlation with the parallax zero
point. Subsequently it was found that none of these global harmonic parameters attained
significant amplitudes. They were abandoned in the later NDAC solutions; in the final
FAST solution their amplitudes were below 0.01 mas (Table 16.3). The sixth harmonic
was however found to be an important local error, i.e. with independent coefficients for
each great circle, as discussed in the previous subsection.

Some sphere solutions included a global parameter representing a correction to the
general-relativistic value of the gravitational light deflection in the heliocentric metric.
This parameter was introduced because Hipparcos offered the first opportunity to mea-
sure the deflection accurately, for optical wavelengths, at large angles from the Sun.
According to General Relativity, for an object at infinity, the projection of the deflection
onto the reference great circle, or the difference in abscissa between the natural direction
and the coordinate direction to the star, is given by:

∆vGR =
2GS
h0c2

u0�hu × Ri

1 − u0�u
[11.19]

where GS is the heliocentric gravitational constant (Table 12.1), h0 the distance from
the Sun to the observer, and u� the coordinate direction towards the Sun; the latter two
are computed from the heliocentric position of the observer, h0 = b0 − bS, as h0 = jh0j

and u� = −hh0i. The global parameter may be defined in terms of the PPN parameter
γ as ΓGR = γ − 1, in which case the relevant coefficient in the observation equation is
∆vGR /2. A slightly different definition was used by NDAC (see Equation 16.10).

Irrespective of the choice and precise definition of global parameters, the corresponding
terms in the observation equation can be expressed as:

vobs − vcalc = � � � + g0� [11.20]

where � = (Γ1, . . . , ΓNΓ )0 is the column matrix of global parameters and g is the column
matrix of coefficients.

Grid-Step Errors

The abscissa resulting from the great-circle reduction was sometimes wrong by a small
multiple of the grid step, due to the 360� phase ambiguity of the signal produced by
the modulating grid. In the observation equation the presence of grid-step errors is
accounted for by the term:

vobs − vcalc = � � � + ns [11.21]
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where n is a small integer (usually n = 0) and s = 1.2074 arcsec is the adopted mean
value of the grid step.

Random Noise

The observation equation is completed by adding a noise term η representing the random
part of the observational errors resulting from the great-circle reductions. This was
assumed to be centred (expected value E(η) = 0), essentially Gaussian (although outliers
were expected and had to be accommodated by the solution method), and of a standard
deviation σv which was basically known from the great-circle reduction. Furthermore,
the noise was assumed to be uncorrelated. This is known to be false, in general, for a
pair of abscissae obtained in the same great-circle reduction (see Figures 16.36–16.37),
but it is a reasonable assumption for the different abscissae of a given star obtained in
different orbits.

The abscissa standard errors, σv, were estimated as part of the great-circle reductions.
However, it was empirically found that these estimates in general required corrections,
either in the form of a multiplicative factor, an added variance, or a combination of
both; and which were often found to be functions of magnitude, colour and time. Such
corrections were derived from the unit-weight variance of the residuals of the sphere
solution, first considered individually by the data reduction consortia (see Sections 11.5
and 11.6), and finally as part of the merging of the consortia results (Chapter 17).

Complete Observation Equation

The abscissa zero point correction c j and the other (local) errors on the great-circle level
(e.g. Cj , Sj) may be brought together in a single unknown column matrix c j for each
great-circle reduction, containing 1 ≤ nc <~ 3 elements. The corresponding coefficient
matrix, also of length nc, is denoted e j i . In the simplest case of nc = 1, the only element
in c j is c j , and the coefficient matrix is e j i = (−1).

Combining the error terms gives the complete observation equation:

d0j i ∆ai + e0j ic j + g0j i� + n ji s + η j i = vobs
j i − vcalc

j i [11.22]

where the calculated (nominal) abscissa, obtained through Equations 11.2 and 11.3, is
uniquely a function of the time associated with the observation (t ji ), the nominal pole
of the reference great circle (R j), and the assumed astrometric parameters of the star
(ai ).

11.4. The Sphere Solution Proper

Primary Reference Stars

The sphere solution proper aims at a direct solution of the system of observation equa-
tions, Equation 11.22, the main objective being the estimation of the abscissa zero points
(c j) and the global parameters (�). As already explained, this objective was achieved
using only a subset of all the observation equations, corresponding to the ‘primary
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reference stars’. The selection of primary reference stars was guided by the following
considerations.

In the right-hand side of Equation 11.22, all terms are less than a few arcseconds, or
' 10−5 rad. Linearisation errors were therefore of the order of 10−10 rad ' 0.02 mas,
and could be neglected. However, the presence of the grid-step term n ji s still made
the system of observation equations highly non-linear and unsuitable for direct solution
by standard (least-squares) methods. It was therefore necessary to restrict the sphere
solution proper to objects with good a priori positions, for which n ji = 0 could be
assumed with a high degree of confidence.

The standard model of stellar motion, Equation 11.3, is only valid for stars which, from
the viewpoint of the Hipparcos observations, could be regarded as point objects with
uniform motion. This excludes well-resolved binaries and multiple stars, for which the
abscissa derived from the phases of the detector signal is a complicated function of the
geometry of the system, the relative intensity of the components, and the direction of
scanning. It also excludes close binaries, where the photocentre shows a non-negligible
acceleration due to the orbital motion of the system. Known double and multiple stars
of such characteristics were therefore excluded a priori.

The choice of primary reference stars for the FAST sphere solutions was essentially
made a priori according to these criteria. It was also attempted to use only photometri-
cally constant stars with good coverage. Within these restrictions it was, furthermore,
desirable to have an even distribution over the whole celestial sphere, preferably with
at least one primary reference star per square degree. This lead to the use of approx-
imately 72 000 primary reference stars in the final iterations of the sphere solutions.
In NDAC, a first choice was made according to the above considerations of duplicity
and possible grid-step errors, and further stars were rejected while setting up the ob-
servation equations, on the basis of the residuals with respect to the previous iteration
of the sphere solution. This resulted in some 50 000 primary stars in the early sphere
solutions, increasing to about 78 000 in the final sphere solution.

General Problem

Due to the selection of primary reference stars, the grid-step term can be disregarded for
the sphere solution proper. The remaining unknowns fall into three groups depending
on their different scope of validity:

for each primary reference star (i): ∆ai

for each great-circle frame ( j): c j

for each observation ( j i): �

The structure of the observation equations, and hence the methods of solution, are
strongly influenced by this categorisation.

Before solving the equations, it was necessary to equalise their statistical weights. This
was done by dividing each equation by σv ji , the actual standard error of the observation
(empirically corrected as described in Section 11.6). The resulting equations can be
written in matrix form as:

A�a + C c + G� + � = �v [11.23]
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where �a, c and � are column matrices with the three kinds of unknowns; they are
of length 5Np, ncNc and NΓ, respectively. A, C and G are the corresponding design
matrices, obtained from the submatrices d0j i , e0j i and g0j i in Equation 11.22 after division
by σv ji . �v is the column matrix of abscissa differences (observed minus calculated, and
normalised to unit weight), and � is a column matrix of noise with assumed covariance
E(��0) = I. The number of rows in A, C, G, � and �v is equal to Mp, the number of
observations (abscissae) for the primary reference stars.

The general problem of the sphere solution proper was to find the vectors �a, c and �
which minimised the Euclidean (L2) norm of the residuals, or:

min kA�a + C c + G� −�v k2 [11.24]

The size of the problem can be appreciated by considering the number of unknowns
and equations in the final sphere solutions (Table 11.1). The matrix ( A C G ), known
as the design matrix of the least-squares problem, was however very sparse: in each
row, only five elements in A, one to three elements in C and NΓ elements in G were, by
design, different from zero. The filling factor was, therefore, (5+ nc + NΓ) /Mp ' 8× 10−6

for solution F37.3 and ' 4 × 10−6 for solution N37.5 (see Table 16.1 for details of
the sphere solution nomenclature). The structure of the design matrix is illustrated in
Figure 11.2.

A feature of the sphere solution problem is that the reference frame for the astrometric
parameters and the abscissa zero points remains unspecified by the observations. This
should in principle result in a six-fold singularity of the system of observation equations,
corresponding to the six degrees of freedom of the reference frame. In reality it was found
that Equation 11.23 was not singular; this problem is further discussed in Section 11.7.
Nevertheless, in the practical implementation of the sphere solution it was necessary to
consider the theoretical rank deficiency especially for the calculation of the variances.

Implementation in FAST

Two basic algorithms were developed in FAST to perform the sphere solution. Before
the launch of the satellite, a working solution was tested and fully implemented into
an operational software by a team of the University of Bologna (Galligani et al. 1989).
This software used the iterative algorithm LSQR based on the Lanczos method, which
was chosen after various trials and adapted to solve the large-scale system of the sphere
solution. It met at that time the stringent requirements set by the computer resources
in the mid-eighties. While it gave satisfactory solutions, it had two major drawbacks:

1. it was to be used as a ‘black box’ algorithm and lacked the necessary flexibility
required during the processing of real data to cope with new modelling, the need
to make an a priori selection of observations, and to produce various statistics;

2. a reliable estimate of the covariance matrix was very difficult to achieve and de-
pended on the iteration scheme adopted.

To overcome these shortcomings, in particular in view of getting a good estimate of
the internal precision of the solution parameters, a second method was developed at
CERGA (Frœschlé 1992). This method, based on a block iteration scheme, proved to
be very flexible and was easily adapted to a changing environment, as the knowledge of
the true properties of the data became more refined with time. The LSQR software was
run extensively in parallel during the development phase of this alternative method and
helped to speed up the tuning of the new software.
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Figure 11.2. Schematic illustration of the structure of the design matrix ( A C G ) for a case with Np = 8 primary

reference stars (5Np = 40 astrometric parameters), Nc = 9 reference great circles (each with nc = 1 unknown,

namely the abscissa zero point), NΓ = 3 global parameters, and Mp = 41 observations (abscissae) referring to the

primary reference stars. The black areas are the non-zero elements of the design matrix. In the upper diagram (a) the

observations are ordered by the great-circle number (i.e. more-or-less chronologically); in the lower diagram (b) by the

star number. Actual numbers Mp, Np, Nc and NΓ are given in Table 11.1.
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Table 11.1. Number of equations and unknowns in the final sphere solutions F37.3 (FAST) and N37.5

(NDAC). Only data corresponding to the primary reference stars are considered. See Chapter 16 for further

details on these solutions.

Solution F37.3 N37.5

Number of equations, Mp 2 091 926 2 451 483

Number of unknowns:

astrometric parameters, 5Np 362 455 390 565

great-circle zero points, Nc 2 281 2 326

other local parameters, (nc − 1)Nc 4 562 –

global parameters, NΓ 8 3

total number, 5Np + ncNc + NΓ 369 306 392 894

In linearised form the observation equations are written:

C δc + A δa + G δ� + � = δv [11.25]

where δc, δa, δ� are differential corrections to the local circle parameters, the astro-
metric parameters, and the global parameters, respectively. This is the order in which
the unknowns are solved by the block iteration scheme; hence the exchange of the first
two terms compared to Equation 11.23. The harmonic coefficients Cj and Sj (Equa-
tion 11.17) were included among the circle parameters, so the lengths of the correction
vectors were 3Nc, 5Np and NΓ.

The block iteration scheme operated on (parts of) the normal equations obtained by the
least-squares method: C0C C0A C0G

A0C A0A A0G
G0C G0A G0G

! δc
δa
δ�

!
=

 C0δv
A0δv
G0δv

!
[11.26]

where the dimension of the normal matrix is N × N with N = 3Nc + 5Np + NΓ ' 370 000.
No direct and general method of resolution could be reasonably envisioned for a system
of this size. The way out was to take advantage of the block structure of A and of
the fact that C is a sparse matrix. If there were only the astrometric unknowns the
problem would reduce to solving as many 5 × 5 linear systems as there are stars, which
is an easy task. The block decomposition attempts to solve more-or-less independently
the unknowns related to the stars and those linked to the more general parameters.
This leads to a very natural iterative design, but has the drawback of disregarding the
cross-correlations between the astrometry and the general parameters.

In a first approximation one considers that the corrections δa and δ� are negligibly small.
The harmonic terms Cj = c j2 and Sj = c j3 are also neglected in this approximation.
Then the matrix C is sorted according to the great-circle index and the correction to
the abscissa origin δc j1 is simply the average of the δv ji for that reference great circle.
Denote by I j the set of primary reference stars observed with respect to great circle j ,
and let Nj be the number of such stars. The zero order solution is then given by:

δc(0)
j1 = N −1

j

X
i2I j

δv ji , δc(0)
j2 = 0, δc(0)

j3 = 0, j = 1 . . . Nc

δa(0) = 0

δ�(0) = 0

[11.27]
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where the sum is taken over the stars i included in great-circle reduction j . The
corrections to the astrometric parameters are then computed, star by star, resulting in
the approximation:

δc(1) = δc(0)

δa(1)
i = (A0

iAi)
−1A0

i

�
δvi − Ci δc(0)

�
, i = 1 . . . Np

δ�(1) = 0

[11.28]

where Ai and Ci are the blocks of A and C associated with the star i, and δvi is the
corresponding observations. Then:

δc(2) = δc(1)

δa(2) = δa(1)

δ�(2) = (G0G)−1G0
�
δv − C δc(1) − A δa(1)

� [11.29]

Equations 11.27–11.29 were iterated until convergence. The other local parameters (Cj

and Sj) were introduced from the second iteration. There were two stopping criteria
tested at every step: (1) a normalised χ2 based on the residuals left at every observation,
and (2) the variation from one iteration to the next of the corrections to the origins.

The sphere solution in FAST was kept completely free to rotate and no attempt was made
to remove the rank deficiency (see Section 11.7 for a discussion). Various experiments
were made at intermediate stages to constrain the system by fixing the position and
proper motion of ‘11

2 star’, e.g. the longitude and latitude of one star and the latitude of
a second, thus removing the theoretical six degrees of freedom. But the linear system
of the sphere solution was in fact not singular but only mildly ill-conditioned and the
constraints brought no decisive advantage. In addition the variance-covariance matrix
of the astrometric parameters was to be recomputed later with an independent software
and it was not a major concern during the sphere solution proper to obtain realistic
variances.

Implementation in NDAC

The solution to the general problem of Equation 11.24 was implemented in NDAC by
way of the normal equations. Only one local parameter was used for each great circle
(nc = 1), so the complete normal equations matrix system had 5Np + Nc + NΓ ' 400 000
unknowns. This was reduced to a manageable size of Nc + NΓ ' 2300 by eliminating the
astrometric parameters in parallel with the accumulation of the normal equations for
the remaining parameters. This required that the observation equations were ordered
according to the star numbers as in Figure 11.2b. Since the abscissae were received
from the great-circle reductions in the order in which those reductions had been made, a
first part of the sphere solution consisted of the sorting of all the abscissa data according
to the star numbers.

For the subsequent formulation there is no need to distinguish between the abscissa
zero points and the global parameters, as they were treated together as a single column
matrix b with Nb = Nc + NΓ rows. In order to eliminate outliers the calculation of all
the unknowns was actually made by a sequence of differential corrections δa, δb to the
initial values. Introducing the matrix B = ( C G ) of dimension Mp × Nb the observation
equations for the corrections are written:

A δa + B δb + � = δv [11.30]



Sphere Solution 209

and the full system of normal equations is:�
A0A A0B
B0A B0B

��
δa
δb

�
=
�

A0δv
B0δv

�
[11.31]

Elimination of the stellar unknowns, δa, gives the following two systems:�
B0B − B0A(A0A)−1A0B

�
δb = B0δv − B0A(A0A)−1A0δv [11.32a]

(A0A)δa = A0δv − A0Bδb [11.32b]

The 5Np × 5Np matrix A0A is block-diagonal, i.e. zero everywhere except for the Np

blocks of size 5 × 5 along the diagonal. It is therefore a straightforward process to
compute the two vectors: fδa = (A0A)−1A0δv [11.33]

and: fδv = δv − A0fδa [11.34]

whereupon Equation 11.32a can be written as:�
B0B − B0A(A0A)−1A0B

�
δb = B0fδv [11.35]

The symmetric matrix on the left-hand side is of size Nb × Nb and practically filled, since
almost any pair of reference great circles shared at least one primary reference star.

Once the observations had been ordered according to the star numbers, Equation 11.33
was used to compute provisional corrections to the astrometric parameters, after which
Equation 11.34 gave the corresponding provisional abscissa residuals. This was done
for one star at a time, while sequentially reading the sorted data into computer memory.
Concurrently with this process, Equation 11.35 was accumulated. This system was
complete when all the stars had been processed, and δb could then be solved by means
of the Cholesky algorithm. After updating of the abscissa zero points and global pa-
rameters, the process started again with new provisional corrections to the astrometric
parameters. This iteration ended when the correction vector δb was negligible: typically
the updates to c j were then less than 10−3 mas. At that time the astrometric parameters
had also reached their final values, as can be seen by comparing Equations 11.32b and
11.33.

It should be noted that the above process is not an iterative solution of the normal
equations (Equation 11.31) but a direct solution through rigorous elimination of δa.
The iteration scheme was primarily needed to handle outliers among the abscissa data.
The ‘pre-adjustment’ of the astrometric parameters, by means of the provisional updatesfδa, had some additional advantages:

• pre-adjustment was not restricted to the primary reference stars, but was in fact
made for as many stars as possible, thus eliminating the need for a separate process
for the determination of the astrometric parameters;

• the final decision whether to accept a star as a primary reference star could be
made immediately after the pre-adjustment, partly based on an examination of the
(provisional) residuals fδv. In practice only stars with very clean residuals were
accepted as primary reference stars, and the corresponding data were then added
to the normals for δb;

• for non-primary reference stars, the pre-adjustment stage was a convenient place
to detect and correct grid-step errors, as described in Section 11.6.
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The abscissa residuals after convergence were statistically analysed in a number of ways,
in particular as functions of colour, magnitude, and the abscissa difference with respect
to the Sun, v − v�. This revealed a number of systematic patterns, in particular the
sixth harmonic in v− v�, with apparently independent and random coefficients (of a few
milliarcsec) in the different great-circle reductions, and the chromatic effects discussed
in Section 16.3. These effects were treated in an ad hoc manner. For the sixth harmonic
and the chromatic variation, the relevant coefficients were determined from the residuals
of the penultimate solution (N37.4, see Section 16.3) and subtracted from the right-
hand sides of the observation equations of the final sphere solution. In a sense this
resembles the block iteration scheme adopted by FAST, but it was only used for those
parameters that were not included in the formal observation equations.

The system of normal equations for δb was found to have a condition number κ ' 2300.
Thus it could be solved without adding any constraint (such as fixing the position
and proper motion for ‘11

2 star’) with a moderate loss of numerical precision. In
fact, most of this loss corresponded to the random selection of one particular solution
from the manifold of solutions consistent with the observation equations, and was not
accompanied by a corresponding deterioration of the reference frame. It did however
result in large formal variances for the abscissa zero points and strong correlations
between them, artifacts of the (almost) undefined state of rotation with respect to an
external coordinate system. This problem was eliminated by projecting the solution onto
the subspace which is complementary to the theoretical null space, and transforming
the covariance matrix accordingly. This is practically equivalent to a minimum-norm
solution and to using the pseudo-inverse for the covariances.

The minimum-norm solution was implemented as part of the Cholesky algorithm for
the solution of Equation 11.35. Let F be the (upper-diagonal) Cholesky factor of
the normal equations matrix, so that the direct solution is δb = F−1(F−1)0B0fδv with
formal covariance V = F−1(F−1)0. Furthermore let N be an Nb × 6 matrix containing,
in the six columns, a set of vectors spanning the theoretical null space. According
to Equation 11.54 these are most easily constructed by taking, as the elements in
row j , the six components of R j and R j t j , where j is the great-circle number. A set of
orthonormal vectors N̂ can be computed e.g. by the Modified Gram-Schmidt algorithm.
The minimum-norm solution is then obtained by the transformation:

ˆδb = δb − N̂0δb [11.36]

and the covariance of the transformed vector is:

V̂ = (I − N̂0)V(I − N̂) =
h
F−1 − N̂0F−1

i h
F−1 − N̂0F−1

i0
[11.37]

It is seen that the inverted Cholesky factor must simply be transformed exactly like the
solution vector, before the covariance matrix is formed. In practice only the diagonal
elements of V̂ were computed. The standard errors of the abscissa zero points were
typically about 0.1 mas.
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11.5. Determination of Astrometric Parameters in NDAC

General Problem

The sphere solution proper determined the abscissa zero points c j and global parameters
� by elimination of the astrometric parameters from the basic observation equation
(Equation 11.22). Shifting to the right-hand side the terms thus determined gives:

d0j i ∆ai + n ji s + η j i = vobs
j i − vcalc

j i − e0j ic j − g0j i� [11.38]

In contrast to the original system, this can be solved directly for one star at a time,
requiring only a very small system of equations to be handled at a time. However, there
are still many complications to be considered, in particular the possible grid-step errors
(n ji ≠ 0), deviations from the standard astrometric model (Equation 11.3) for some
stars, and the existence of outliers caused, for example, by the superposition of chance
stars in the instantaneous field of view from the other viewing direction.

Implementation in NDAC

In NDAC the determination of the astrometric parameters was integrated with the
sphere solution, as described in the previous section, for all stars except those treated by
the special double-star process described in Chapter 13. Other cases where the standard
stellar model was not applicable, principally the astrometric binaries requiring quadratic,
cubic or orbital solutions for the motion of the photocentre, were not systematically
investigated but the NDAC data were used for such solutions as part of the merging
process (Chapter 17).

An attempt to eliminate grid-step errors was made as soon as more than one observation
of the star had been rejected, or if the goodness-of-fit for the star exceeded a given
threshold. As a first attempt, the integers n ji were chosen in such a way that:

jvobs
j i − vcalc

j i j ≤ s /2 [11.39]

for all the observations of this star. If the residuals were still not acceptable, a systematic
search was made to determine the correct set of integers n ji . The initial coordinates of
the star were modified in steps of about 0.5 arcsec, new integers determined according
to Equation 11.39, and the residuals and goodness-of-fit were again computed. This
process was repeated until a satisfactory fit was obtained, or until the modified coordi-
nates were too far away from the initial position. Usually the search was limited to an
area of only a few arcsec radius, because of the high risk of finding spurious fits at larger
distances.

The complete expression for the variance-covariance matrix associated with the astro-
metric parameters of star number i, obtained from Equation 11.32b, is:

Vi = (A0
iAi )−1 + SiS0

i [11.40]

where Ai is the submatrix of A referring to the star, and:

Si = (A0
iAi )−1AiB(F−1 − N̂F−1) [11.41]
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The term SiS0
i was, for practical reasons, neglected. This is tantamount to neglecting

the variance contributed by the abscissa zero points through the second term in Equa-
tion 11.32b. This was believed to be an acceptable approximation in view of the rather
small (~ 0.1 mas) errors on the abscissa zero points, compared to the typical abscissa
standard errors (~ 3 mas).

11.6. Determination of Astrometric Parameters in FAST

The sphere solution in FAST was intended to produce the parameters required to
define the system, in such a way that every abscissa could be brought into a fully consis-
tent reference frame. The only remaining degrees of freedom were the six parameters
needed for the time dependent rotation, to be determined by the link to the extragalactic
reference frame. The astrometric parameters resulting from the sphere solution were
considered as a by-product of this process and not as final for these stars. In any case,
an independent software had to be written for the determination of the astrometric pa-
rameters of the non-primary reference stars, which were not part of the sphere solution.
This software needed to be more flexible than the corresponding one in the sphere solu-
tion in order to handle all the difficult cases, the double and multiple stars, and to cope
with the grid-step errors very common for stars with poor initial positions or proper
motions. This led, at an early stage of the definition of the FAST organisation, to the
identification of the astrometric parameter determination as a task by itself, independent
of the sphere solution and to be designed to produce the astrometric solutions for all
the stars.

Environment and Main Goals

The sphere solution in the FAST processing ended up with a file containing the cor-
rections to be applied to each origin, one per circle, so that the resulting network of
circles determined a consistent reference frame on the sphere. Then all the abscissae,
of the primary reference stars as well as all the other stars and solar system objects, were
referred to the new origins and corrected for the general parameters. The corrected
abscissae for star i were:

δ ṽi = δvi − Ci δc − G δ� [11.42]

In the normal case of a single star following the standard model, the least-squares
problem for the determination of the five astrometric parameters was:

min kAi δai − δ ṽi k2 [11.43]

which is to be solved once for each star. The software for the astrometric parameter
determination included a number of tests and specialised algorithms for the weighting
of the observations, the recognition of outliers, and the correction of grid-step errors.
It also allowed a number of alternative models to be tested in addition to the standard
one with only the five astrometric parameters λ, β, π, µλ�, µβ , such as introducing an
accelerated motion, or solving for the astrometric parameters of the centre of mass of
double stars with known orbits.

For the double and multiple stars the abscissae were corrected for the duplicity effect
as explained in Section 13.3, i.e. in such a way that the modified abscissae referred to
the primary or to the photocentre of the binary, depending on the separation. The
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solution for the astrometric parameters of the primary or photocentre then proceeded
in the same way as for the single stars.

Weighting Scheme

One of the most important aspects of the least-squares solution for the five astrometric
parameters was the scaling of the variances resulting from the great-circle reductions.
Each observation equation was initially weighted by wji = 1/σ2

v ji
, where, as before,

j stands for the circle and i for the star, and σv ji was the standard deviation of the
abscissa estimated by the great-circle reduction. In the FAST treatment several changes
were brought to these standard deviations in order to scale the observation equations
correctly.

For a given weighting scheme, the unit-weight variance for a particular star i was
computed as:

u2
i =

1
Mi − 5

X
j2Ji

w ji(ṽ
obs
j i − vcalc

j i )2 [11.44]

where Ji is the set of reference great circles in which the star was included and Mi is the
number of such circles; ṽobs

j i is the observed abscissa, corrected as in Equation 11.42.
The unit-weight variance should follow the distribution of the normalized chi-square
variable χ2

Mi −5 /(Mi − 5) with unit mean. The sample distribution of u2
i was studied for

various subsets of single and multiple stars as a function of magnitude and colours and
led to a rather complex weighting system with wji = 1/σ2

j i depending on whether the
star was single or double. For the stars processed as single, σ j i was computed as:

σ j i = (0.86 + 0.0084 Hp)(σ2
v ji

+ σ2
m)1/2 [11.45]

where the additional standard deviation depending on the magnitude Hp was given by:

σm =
�

1.561 (1 + 0.0978x + 0.0217x2 + 0.0048x3 + 0.0011x4) mas if Hp < 11.5
5 mas otherwise

[11.46]
with:

x = 10(Hp−8)/5 − 1 [11.47]

This scheme was also used for weighting the equations of the primary reference stars in
the sphere solution. For the double stars the corresponding expression was:

σ j i = (0.86 + 0.028 Hp)(σ2
v ji

+ σ2
c )1/2 [11.48]

where σc was the standard deviation of the correction applied to the abscissa in order
to move the reference point to the primary (for separations % > 0.35 arcsec) or to the
photocentre (for % < 0.35 arcsec) of the double star (see Chapter 13).

Filtering of Outliers

There were essentially three modes for selecting or rejecting the observations:

1. the great-circle reduction provided several flags for every star observed in a circle to
report on problems with the solution. The flagging was based on the statistical anal-
ysis of the residuals and most problems were connected to grid-step inconsistencies
in the circle adjustment of the grid-abscissae. Out of nearly 3 × 106 abscissae, this
led to the rejection of 22 000 observations, or about 0.7 per cent of the total;
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2. from the study of the residuals of the abscissae it was possible to locate outliers with
residuals larger than three times the standard deviation σ j i . Then a new solution
was computed until no more observations were rejected. For any star the fraction
of rejected observations was kept below 30 per cent. The most general situation
was no rejection at all (90.2 per cent of the stars) or only one rejection (7.6 per
cent of the stars); only in 2.2 per cent of the cases were there two or more outliers.
On the average there were just above three outliers per great-circle reduction, but
this number was subject to considerable variation because the rejections were quite
often concentrated on a few bad circles with problems of attitude convergence;

3. a manual mode with an a priori rejection of great circles based on a look-up table,
mainly for the purpose of comparison or to study the influence of a particular
configuration. The look-up table was specific for each star to be tested, and the
software could be run only for a preselected set of stars.

Correction of Grid-Step Errors

An algorithm to recognise and correct grid-step errors was devised by Bastian (1985). Its
implementation worked smoothly, and was of constant use in the preliminary versions of
the software. Its efficiency was however limited to circumstances when the proportion of
great circles to be corrected was small and jn ji j ≤ 2 or 3. This was clearly unsatisfactory
for many double stars and for the few hundred single stars with large errors in the Input
Catalogue.

An alternative algorithm was therefore implemented. This searched for solutions at
distances as large as 20 arcsec from the reference position. The software was a specialised
version of the algorithm used to determine the relative astrometry of double stars in the
FAST processing (Chapter 13). Indeed, the double star algorithm is, to an essential part,
a robust grid-step error solver. In Equations 13.19–13.21 for the relative astrometry
of double stars, the abscissa difference δ ṽ j i was substituted for the projected phase
difference between the secondary and primary components. The solution for the ‘double
star parameters’ X = % sin θ and Y = % cos θ then provided the desired update of the
reference position.

Adding a parameter for the parallax, straightforward modifications led to a new method
for the astrometric parameter determination, which were much less sophisticated than
the nominal method, but very useful for producing a solution within a few milliarcsec
of the true position, whatever the starting value. All the stars were therefore first solved
with this alternative method, and the results then became the starting points for the
actual astrometric parameter determination, in which there was no longer any grid-step
problem.

Practical Implementation

All the user-defined settings, combined with the possibility of running the program on
a star by star basis, enhanced considerably the flexibility of the astrometric parameter
software compared to the extreme rigidity of the sphere solution and proved to be
decisive in the solution of all the non-trivial cases.

Two versions of a software originally developed at the Astronomisches Rechen-Institut
in Heidelberg (Walter et al. 1985, Lenhardt et al. 1991) were implemented and run at
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two places. The evolution of the two versions was not fully parallel and the differences
noticed in the results from time to time had to be carefully investigated. Eventually
all the stars were processed on a single computer to produce the final FAST solution.
Many intermediate cross-checks between CERGA and ARI helped make the final re-
sult very reliable. Also during this final step, frequent comparisons were made with
the astrometric parameters of the primary reference stars computed during the sphere
solution proper, which proved very useful for the understanding of the whole process.

11.7. Rank Deficiency and Convergence Properties

As mentioned in Section 11.1, the zero point corrections c j were determined in such
a way that the corrected abscissae defined a globally consistent reference frame, but
the observations themselves did not define any specific reference frame. This means
that if a particular solution a, c, � to the least-squares problem of Equation 11.24 was
found, then there existed an infinite number of (slightly) different solutions a + δa,
c + δc, � + δ�, for which the norm remained at the minimum. As a consequence the
least-squares equations were expected to have a rank deficiency corresponding to the
six degrees of freedom of the reference frame (Betti & Sansò 1983).

Contrary to this expectation it was found, already in the early simulations of the
Hipparcos data reductions, that the equations for the sphere solution were in fact only
weakly ill-conditioned (Lindegren & Söderhjelm 1985). This problem of the (absence
of) rank deficiency was discussed at length in the Hipparcos literature (e.g. van Daalen,
Bucciarelli & Lattanzi 1986). The conclusion has been that the non-singularity is due
to the splitting of the overall problem into different steps, during which different parts
of the unknowns of the problem were considered to be fixed. In this section the problem
is re-analysed in the framework of the present formulation of the general problem, and
the results of numerical experiments towards a more rigorous global solution of the
astrometric parameters are described.

Analysis of the Rank Deficiency

For simplicity the global parameters are excluded from the present discussion, as they are
not expected to contribute in any significant way to the question of the rank deficiency.
Furthermore, only one great-circle parameter was considered, i.e. c j or θR j . (Clearly the
addition of more unknowns, such as the global parameters, cannot render the problem
less ill-conditioned, and could therefore not be the source of the non-singularity of
the actual equations.) The expected rank deficiency would consequently lead to the
existence of non-zero vectors δa and δc satisfying:

A δa + C δc = 0 [11.49]

For a particular observation this can be written:

d0δa − δθR = 0 [11.50]

where δa now refers to the one star in question.

This manifold of valid solutions to the least-squares problem corresponds to a set S of
reference frames differing from each other by a time-dependent orientation vector "(t).
Since the objective is to study the effects of small variations in the unknowns, it will be
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assumed that the orientation differences are small; thus, only first-order terms in the
small quantities ", δa, and δ� are retained. Only a linear variation of " with time can
be absorbed by the proper motion components of the astrometric parameters; the time
dependence must therefore be of the form:

"(t) = "0 + !t [11.51]

The six degrees of freedom correspond to the components of "0 and !.

Let [ x y z ] be an arbitrary reference frame in the set S. Any other reference frame in S
can be written as [ x+δx y+δy z+δz ], where δx = " × x etc. Since the direction to the
star is independent of the reference frame, δr = 0 and Equation 11.4 gives:

p δλ� + q δβ = r × " [11.52]

Inserting this into Equation 11.8a and multiplying by sec r gives for the first term in
Equation 11.50:

d0δa = m0[r × "] sec r = (m × r)0" sec r

' [(R × u) × u]0" sec2 r [11.53]

where, in the last step, Equation 11.7 was used with jR × uj = cos r and r ' u to first
order in the small angles. For the second term in Equation 11.50 it is noted, from
Equation 11.14, that θR = P̃0Q; thus:

δθR = P̃0δQ = P̃0(" × Q) = (Q × P̃)0"

' −R0
" [11.54]

Here, again, the small-angle approximation was invoked for the last step. It should be
noted that (λR, βR) are interpreted as invariants, so that δR = " × R; on the other hand,
R̃ is effectively fixed by the great-circle reductions and therefore unaffected by ".

Combining Equations 11.53 and 11.54 gives:

d0δa − δθR =
�
(R × u) × u + R cos2 r

�0
" sec2 r

=
�
uu0R − R sin2 r

�0
" sec2 r

= (u − RR0u)0" tan r sec r

= (m × R)0" tan r [11.55]

where the vector triple product [(a × b) × c = bc0a − ab0c] was applied twice, and
R0u = sin r was also used.

It is seen that Equation 11.50 is not strictly satisfied by the variations δa, δθR produced
by a small rotation of the reference frame. In Equation 11.55 the right-hand side is
of the order of tan r times the terms on the left-hand side. The condition number of
the observation equations, instead of being infinite, should therefore be of the order of
j tan rj−1 ' 102, and the condition number of the normal equations should be κ ' 104.
This is in fair agreement with what was found in the actual solutions (Section 11.4).

As suggested by previous studies, the reason for the non-singularity can be traced back
to the approximation made in connection with Equation 11.15a, namely that the terms
containing θP and θQ were neglected. Since δθP = −P0

" and δθQ = −Q0
", the neglected

terms amount to:

(δθP cos v + δθQ sin v) tan r = −(P cos v + Q sin v)0" tan r

= −(m × R)0" tan r [11.56]
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Figure 11.3. Eigenvalues for two small-scale simulations of the sphere solution, using 20 stars with 60 astrometric

unknowns (positions and parallaxes). Open circles: only the abscissa zero point was estimated for each reference great

circle. Filled circles: all three orientation parameters in � were estimated for each great circle. The expected rank

deficiency of three shows up only in the latter case.

exactly cancelling the previously found inequality. The inclusion of the two additional
unknowns θP and θQ for each great-circle frame should therefore in principle provide the
expected rank deficiency; in reality it should at least drastically increase the condition
number of the design matrix.

Numerical Experiments

One of the first numerical studies of the rank deficiency problem was performed by
S. Söderhjelm in 1983. The observations of only 20 stars were simulated, assuming
the nominal scanning law but with a 30� field of view. The positions and parallaxes
were included as unknowns, together with one (θR) or three (�) orientation parameters
for each reference great circle. In this case the orientation parameters, rather than
the astrometric parameters, were eliminated from the full normal equations, leading to
reduced systems with 3Np = 60 unknowns. The eigenvalues of these systems are shown
in Figure 11.3. The use of a single orientation parameter per great circle gave a rather
well-conditioned system (open circles; condition number κ ' 35) while elimination of
all three orientation parameters gave a very distinct jump from the 57th to the 58th
ranked eigenvalue (filled circles; condition number κ ' 5 × 106. This latter behaviour
was exactly as expected for a well-posed least-squares problem with a rank deficiency of
three, considering that single-precision arithmetics (four-byte reals) was used.

The sphere solutions performed by both reduction consortia used the formulation of
Sections 11.3 and 11.4, including the approximation leading to the non-singularity
of the least-squares problem. In a sense this was tantamount to injecting a priori
positional information into the observation equations, forcing the poles of the actual
great-circle frame to coincide with the nominal poles. As a consequence of this approach,
the consistency of the final Hipparcos reference frame could in principle be spoiled
by overconstraining (Lattanzi, Bucciarelli & Bernacca 1990). The external iteration
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Figure 11.4. Residual systematic differences, estimated by the method of infinitely overlapping circles, between the

modified solution (solving also for the longitudes of the reference great-circle poles) and the standard FAST sphere

solution. The top panels show differences in ecliptic longitude (solid lines) and latitude (dotted), the bottom panels show

the parallax differences.

scheme adopted by the consortia (Section 16.2) was supposed to take care of this
problem. However, it was not obvious that this procedure converged to a reference
frame completely free of the distortion possibly introduced by the overconstraining; nor
was it clear whether the relatively few iterations actually performed were sufficient for
convergence.

A study of the convergence properties of the Hipparcos sphere solution, performed by
B. Bucciarelli, M.G. Lattanzi and M. Frœschlé, compared the 37-month standard FAST
solution before the last iteration with the corresponding results obtained by introducing
the poles of the reference great circles as additional unknowns. Because of the low
estimability of the adjustment to the latitude of the pole (∆βR), the actual experiment
was carried out with only one additional unknown per great circle, i.e. the adjustment to
the longitude of the pole (∆λR = z0�). Its coefficient in the modified condition equation
reads:

eλR = [sin v cos(λR − λ) + cos v sin βR sin(λR − λ)] cos β [11.57]

where (λ, β) is the geometric position of the star.

Before comparing the modified solution to the FAST standard solution, a small rotation
was applied to bring the former onto the system defined by the standard solution. The
estimated rotation parameters were:

εx = −0.3499 ± 0.0002 mas

ε y = −0.2445 ± 0.0002 mas

εz = +0.0680 ± 0.0002 mas

[11.58]
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The catalogue-wide rms of the positional differences were ' 0.3 mas and ' 0.04 mas in
λ before and after the rigid rotation, respectively; analogously, for β the rms differences
were ' 0.2 mas and ' 0.03 mas.

The method of infinitely overlapping circles (see Section 16.6) was utilised to evaluate
residual systematic differences in the astrometric parameters. As both the modified and
standard solutions were based on the same subset of 45 035 primary reference stars, the
radius of the small circles was increased to R = 3�. This resulted in an average of 30
stars per circle. Figure 11.4 shows the computed systematic differences in position and
parallax as functions of ecliptic longitude and latitude; a similar behaviour was observed
for the proper motion differences. The systematic differences, at this resolution, are
typically on the level of 0.01 to 0.02 mas. These results show that the two solutions
are practically identical and support the conclusion that the external iterative scheme
adopted by the consortia has been adequate to completely recover the errors in the
a priori determined coordinates of the poles of the reference great circles.

Evidently this experiment cannot address possible distortions introduced earlier in the
reduction procedure. To this end, a new reduction, which directly solves for the attitude
parameters along with the astrometric parameters, would be required.

L. Lindegren, M. Frœschlé, F. Mignard
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