
15. MINOR PLANETS AND PLANETARY SATELLITES

Some 48 minor planets and three natural satellites were observed during the
Hipparcos main mission with the purpose of linking the dynamical and kine-
matical reference systems and for dynamical and physical studies of these solar
system bodies. This chapter describes specific aspects of the processing im-
plemented for the solar system objects in order to derive the astrometric and
photometric solutions. Several summary tables related to the minor planets
and their observability conditions are also included in this chapter.

15.1. Introduction

The observation of minor planets and natural satellites of giant planets with Hipparcos
was considered during the mission planning to be of high scientific relevance with
the goal of obtaining accurate astrometric positions and investigating the relationship
between the dynamical and kinematical reference systems. Some 60 minor planets were
included in the preliminary program, of which 48 were repeatedly observed during the
actual mission together with three planetary satellites (J II Europa, S VI Titan and
S VIII Iapetus) yielding astrometric and photometric data of excellent quality. The
corresponding star mapper observations are described in Volume 4, Chapter 15.

As a result of the rapid and non-linear motion of these objects over a time-span of only
a few hours, the basic data treatment had to be adapted for these objects to produces
one-dimensional astrometric positions on the reference great circles on which they were
observed. The solar system objects were observed in the same way as stellar objects.
However objects with an apparent diameter larger than 0.05 arcsec were resolved by the
Hipparcos telescope and the astrometric solution refers more or less to the photocentre
of the illuminated fraction of the disc, i.e. to a point varying with the phase angle. In the
first section of this chapter the main properties of the grid signal pertaining to the minor
planets are emphasised. Then the astrometric solution on the great circle is presented,
followed by the photometric aspects of the processing.

15.2. Hipparcos Observations of an Extended Source

The signal recorded behind the Hipparcos main grid during the transit of a light source
was modelled by the ‘five-parameter model’ introduced in Chapter 5. It was shown that
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the periodic signal for a point-like source could be accurately represented by a Fourier
series up to the second harmonic as:

S(t) = I0 [1 + M0 cos(ωt + φ0) + N0 cos 2(ωt + φ0)] [15.1]

where M0, N0 are the calibrated modulation coefficients, and φ0 is the modulation phase
of the signal, corresponding to the position of the source on the grid at the reference
time t = 0. ω is the time frequency of the signal. For an object of significant angular
size, typically with a diameter ρ >~ 0.05 arcsec, the modulated signal results from the
integration of the point-like signal over the surface of the source. This gives a signal of
the same form (Morando 1986, Lindegren 1986, Morando & Lindegren 1989):

S(t) = I [1 + M cos(ωt + φ) + N cos 2(ωt + ψ )] [15.2]

but now with reduced modulation coefficients M , N and (in general) shifted modulation
phases φ, ψ depending on the brightness distribution of the apparent disc. Let x = πρ /s
be a dimensionless variable relating the angular diameter of the planet to the grid period,
s = 1.2074 arcsec. Introduce the complex function:

U (x) =
ZZ

Iσ exp(−ιxw0n)µ dσ

where Iσ is the specific brightness of the surface element dσ , ι =
p

−1, w the unit vector
in the scanning direction (Figure 15.6), n the unit vector normal to the surface element,
and µ the cosine of the angle of reflection. The total intensity and the degradation of
the modulation coefficients can then be written:

I = U (0),
M
M0

=
���� U (x)

U (0)

���� ,
N
N0

=
���� U (2x)

U (0)

���� [15.3]

and the phase shifts are:

φ − φ0 = arg [U (x)] , ψ − ψ0 = 1
2 arg [U (2x)] [15.4]

In interferometric terminology, U (nx) /U (0) is the complex visibility of the object, in
the direction of w, at n times the spatial frequency of the grid.

The abscissa was derived from the phase φ of the first harmonic in NDAC, and by
means of a weighted average of the two phases, 0.75φ + 0.25ψ , in FAST. The major
consequences for an extended object are that (i) the observed position does not strictly
correspond to the definition of the photocentre, and (ii) the FAST and NDAC observed
positions do not strictly correspond to the same point. Introducing the functions:

j1(x, α) = J1(x) + J1(x cos α)

h1(x, α) = H1(x) − H1(x cos α)
[15.5]

where α is the solar phase angle, and J1, H1 are the Bessel and Struve functions
respectively, then for a uniformly bright sphere and a scan along the intensity equator:

U (x) = j1(x, α) + ιh1(x, α) [15.6]

which yields the phase offset relative to the centre of figure. The difference between
the photocentre and the position assigned from the phases, using the FAST and NDAC
procedures, is shown in Figure 15.1 as a function of the apparent diameter of the planet.
For a phase angle of α = 20�, typical for the Hipparcos observations of minor planets
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Figure 15.1. Theoretical difference between the observed position and the photocentre versus apparent diameter. The

curves are for a spherical object of uniform brightness viewed with a solar phase angle α = 20�. Solid curve: positions

derived from the first harmonic only (NDAC). Dashed curve: positions derived from a weighted mean of the harmonics

(FAST) — this method is practically limited to objects smaller than 0.7 arcsec.

(Figure 15.10), the differences remain well below one milliarcsec except for (1) Ceres
as observed by FAST at its maximum diameter, ρ ~ 0.7 arcsec.

The Hipparcos magnitude of the minor planets was estimated in the same way as for the
stars and is described in Chapter 14. The magnitude Hpdc was directly derived from
the mean intensity I of the signal (corrected for sky background), while Hpac was based
on the amplitudes IM and IN of the modulated components of the signal. Then from
Chapter 14:

∆Hp ≡ Hpac − Hpdc ' −2.5 log10
MM0 + NN0

M2
0 + N 2

0

[15.7]

Hpac is a biased estimator for the larger planets, depending on the apparent diameter at
the time of observation, through the attenuation of the modulation measured by M /M0

and N /N0.

In the approximation of a spherical object of uniform brightness at zero solar phase
angle, the imaginary part of U (x) vanishes because of the azimuthal symmetry of the
problem. Therefore U (x) is simply given by the Hankel transform of order zero:

H0[1; x] =
Z 1

0
J0(xr)r dr [15.8]

and the attenuation in the modulation coefficients can be expressed as a function of the
apparent size of the source:

M
M0

= 2
jJ1(x)j

x
,

N
N0

=
jJ1(2x)j

x
[15.9]
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Figure 15.2. Attenuation of the modulation coefficients for the first (dashed line) and second harmonics (solid line)

for a spherical object of uniform brightness and of apparent diameter ρ.

These functions are plotted in Figure 15.2. There is no significant attenuation in the
signal modulation up to an apparent diameter of about 0.1 arcsec for the first harmonic
and 0.05 arcsec for the second harmonic.

15.3. Astrometry on the Circle

Transformation to Astrometric Directions

In the great-circle reduction a one-dimensional position was obtained, about twice per
day, for the Hipparcos stars observed in that interval. This great-circle abscissa was
calculated by fitting all the grid coordinates of a star collected during the great-circle
interval of several hours. The main principles of this process, outlined in Chapter 9,
apply also to the observations of the solar system objects. However, because of the rapid
and non-linear motion of the planets, a different sampling time was adopted for these
objects, leading to one great-circle abscissa for every observational frame of 32/15 s.
For the final catalogue, normal positions were derived at a rate of one astrometric
one-dimensional position per field–transit of the object across the instrument main grid.

The instantaneous Hipparcos observations referred to the proper direction of the planet;
thus the first step of the processing consisted of transforming this direction into the
coordinate direction by computing the stellar component of the aberration and the
parallax introduced by the satellite’s motion around the Earth. These corrections were
evaluated to an accuracy better than one milliarcsec, which required the modelling of
the aberration to the second order in jVjc−1, where V is the barycentric velocity of
Hipparcos. Likewise, the light bending by the spherical potential of the Sun was taken
into account to first order in GS /ac2 ' 2 mas where a, the heliocentric distance of the
satellite, is close to A ' 1 AU (see Table 12.1). The deflection by the giant planets was
neglected.

Most minor planets have a sizeable apparent diameter (> 0.05 arcsec) compared to the
Hipparcos astrometric accuracy, and the solar phase angle effect shifts the photocentre
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Figure 15.3. Coordinate direction of a minor planet. The observed satellitocentric proper direction ua is first corrected

for stellar aberration and light deflection into us. It is then transformed into the (geocentric) coordinate direction ug.

The epoch of observation at the satellite is also corrected by ∆τ into an epoch at the geocentre.

with respect to the centre of figure. As this cannot be evaluated within the required
accuracy without a rather sophisticated and uncertain modelling of the light diffusion on
the surface, no phase correction was applied and the direction provided by Hipparcos
corresponds in the first approximation to the position on the sky of the instantaneous
photocentre (see Section 15.2).

Let ua be the apparent (or ‘proper’) satellitocentric direction of a solar system object,
and ug its geocentric astrometric (or ‘coordinate’) direction, with juaj = jugj = 1 (see
Figure 15.3 and Chapter 12). These vectors are referred to a coordinate frame as-
sociated with a given reference great circle, the so-called reference great-circle frame
(Section 11.2). The one observed quantity was the apparent abscissa (v) on the ref-
erence great circle, while the perpendicular coordinate (r) was computed from the
ephemerides. The initial conditions for the ephemerides of minor planets were taken
from the ‘ Ephemerides of minor planets for the year 1992’ and were numerically in-
tegrated with a Bulirsch-Stoer integrator including the perturbations of all the major
planets from Mercury to Neptune. The planetary positions were taken from the JPL
solar system ephemerides DE200.

The direction ua was first transformed into a satellitocentric astrometric direction, us,
by correcting for the aberration and gravitational light bending. This was actually
done as part of the same processing as applied to the stars, namely in the great-circle
reductions (Chapter 9). The satellitocentric astrometric direction was then transformed
into the geocentric astrometric direction, ug, by applying the parallactic correction.
The relationship between the apparent direction and the direction corrected for stellar
aberration (the ‘natural’ direction) is given by inverting Equation 12.7 to the second
order in V /c:

ûs =
�

ua −
�
1 −

V0ua

2c

�
V
c

�
+ O

�
jVj
c

�3

[15.10]

where V is the barycentric velocity of the Hipparcos satellite. The barycentric velocity
of the Earth was provided by a compact representation of the ephemeris BDL 82 (see



310 Minor Planets and Planetary Satellites

r

d

)

o )

(

ro

i

,(

a , a

ψ

∆

d

θ

Sun Earth

Planet

gu

σ

Figure 15.4. Notations for the correction of gravitational light deflection.

Chapter 12 and Chapront et al. 1984), while the geocentric velocity of the spacecraft was
provided by the mission operations centre, ESOC. The velocity vector V was computed
as the sum of these two velocities after transformation to the same reference system.

The application of the gravitational light deflection for a source at finite distance from
the Sun leads to the following expression for the astrometric direction (us) in terms of
the natural direction (ûs):

us =
�

ua − d
2GS
a c2

tan
Ψ
2

�
+ O

�
GS
a c2

�2

[15.11]

with d = hus × (r0 × us)i the unit vector along the impact radius, GS the heliocentric
gravitational constant and c the speed of light (see Table 12.1); a is the heliocentric
distance of the satellite (i.e. a ' A), and Ψ the heliocentric angle between the object
and the satellite (see also Figure 15.4 for notations).

After these two steps us must be transformed into the geocentric direction ug, which
gives:

ug = hus∆ + rsati [15.12]

where the geocentric position of Hipparcos, rsat, was provided with an accuracy of
' 2 km by the satellite orbit determination performed at ESOC. ∆ is the distance
between Hipparcos and the minor planet, which for this correction had to be known to
' 15 000 km, a requirement easily satisfied by the available ephemerides. The epoch
of observation was also corrected for the first order light-time difference due to the
geocentric orbit, ∆τ = (g − ∆) /c, yielding the time at the geocentre, where g = jus∆ + rsatj
is the geocentric distance to the planet (see Figure 15.3).
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Construction of a Normal Place in NDAC

A normal place was derived for every field–transit from the ' 8 consecutive abscissae
measured at the frame level. In NDAC, the normal place was constructed from a fit
of the observed abscissae to the linear motion of a planet in the time interval of a field
crossing, about 19 s. In the first stage of the great-circle reduction, all the data were
stored and a temporary file was created for every object observed on the circle. This
file contained a reference time tR, a reference abscissa vR, the rate q = dv /dt, and a
mean ordinate rR for each object. For a solar system object, the ephemeris was used to
compute a predicted abscissa and ordinate for the first and last frame of the transit (v1, r1

and vn , rn) corresponding to the mid-frame times (t1, tn). With the reference abscissa
vR = (v1+vn) /2, the reference time tR = (t1+tn) /2, the abscissa rate q = (vn − v1) /(tn − t1),
and the mean ordinate rR = (r1 + rn) /2, the residual of the abscissa in the kth frame, at
time tk, was:

δvk = vk − G
�
vR + (tk − tR)q, rR

�
[15.13]

where G(v, r) is the transformation to grid coordinate, including attitude and instrument
modelling. The result of the great-circle reduction was a weighted mean correction δv
to the reference abscissa, so that the output for each transit consisted of tR, vR + δv and
rR. Transits were discarded when the signal was too faint to be useful, or in the case of
a pointing offset exceeding 10 arcsec, making the reliability of the data questionable.

The results thus obtained in the final NDAC great-circle reductions were further cor-
rected for the abscissa zero point errors determined in the corresponding sphere solu-
tion (N37.5; see Chapter 16). They were then transformed from the reference frame of
N37.5 to the provisional system H37C realised by the merging of the final FAST and
NDAC sphere solutions (see Chapter 17). This transformation was slightly different
from, but practically equivalent to, the subsequent transformation to ICRS described
in Section 15.4. It was applied as a correction to the abscissa:

vH37C = vN37.5 − "0R [15.14]

where R denotes the (positive) pole of the reference great circle, and " is the time-
dependent rotation detailed in Table 15.1.

Construction of a Normal Place in FAST

Unlike NDAC the normal place in FAST was based on the median of the abscissae.
A typical situation of the abscissae at the frame level used to construct the normal
place is shown in Figure 15.5. After the reduction on the sphere, a dedicated file was
constructed for all the solar system objects to store the abscissae at each mid-frame time.
The corrections to the origins δv0 (Chapter 16) were available separately and used to
obtain the abscissae in a consistent reference frame.

Let vR be the reference abscissa at mid-transit time and q = dv /dt based on the planet
ephemeris. The observation equation for the reference abscissa was then: vR = vk −
(tk − tR)q. The resulting reference abscissa was eventually estimated as the median v̄ of
the n ' 8 values vk − (tk − tR)q in a transit. The output for each transit consisted of tR,
v̄ + δv0, rR and the standard error of the reference abscissa, given by:

σ2
v =

π
2n

1
n − 1

X
k

�σ0

σk
ηk

�2
=

π
2n

σ̃2
0 [15.15]
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Figure 15.5. Reduction of the minor planets abscissae at the transit level. A normal place for each transit was

constructed by fitting the location parameter of a linear motion whose speed was taken from the ephemeris (solid line).

The normal position (circle) corresponds to an average position of the frame level positions (mean in NDAC, median

in FAST). The great-circle abscissa origin on the plot is arbitrary.

where ηk = vk − vR − (tk − tR)q are the residuals, and σ0ηk /σk the weighted residuals.
σ̃2

0 is an estimator of the variance of a single observation. Usually there were n = 8
observations per transit.

Dubious abscissae vk with an uncertainty greater than 150 mas were systematically
discarded. In order to identify transits possibly corrupted by the presence of a parasitic
star in the complementary field of view, observations with σ∆Hp > 0.3 mag were rejected,
where ∆Hp is the difference between the ac- and dc-magnitudes (see Equation 15.7).
Two other tests were constructed to filter out unreliable transits. Transits with estimated
σ̃0 > 2σ0, or containing only one frame, were rejected. Likewise, a transit was rejected
if it led to a magnitude difference between the ac- and dc-scales such that:

j∆Hp − ∆Hpcalcj > 5σ∆Hp [15.16]

with ∆Hpcalc ' 1.214ρ2 + 0.03ρ4 derived from Equations 15.7 and 15.9 for an object of
uniform brightness of apparent diameter ρ. The reference time was taken as the mean
of the first and last used frame of a transit. The resulting positions were in the reference
frame of the final FAST sphere solution, F37.3.

15.4. Astrometry Final Output

Transformation to the Tangent Plane

Each observation of a solar system object is uniquely defined by the time, the abscissa
and the orientation of the circle on which the planet position was projected. It was,
however, considered that a different presentation of the results would be more con-
venient for the users, although it was not possible to provide strictly two-dimensional
positions. The Hipparcos observations of solar system objects are supplied as an obser-
vation equation relating the abscissa to a perfectly defined reference point (α0, δ0) (see
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Figure 15.6. Transformation to the tangent plane. See text for details.

Figure 15.6). More precisely, the published data determine the equation of the straight
line v = constant in the tangent plane centred at the reference point.

To minimise the errors due to the projection on the tangent plane, the reference point
was chosen in the immediate vicinity of the true, but unknown, position. The reference
point has the same abscissa as the observed abscissa of the planet, vobs, and a calculated
ordinate rcalc based on the ephemeris at the reference time. The astrometric position
expressed in the reference great-circle frame (RGC) and in the provisional reference
frame of the Hipparcos reductions (P, representing either H37C or F37.3) are related
by the transformation:

uP = R3(Ω)R1(i)uRGC [15.17]

where i and Ω are the inclination and the longitude of the node of the reference great
circle, Rk represents a rotation about the kth axis, and:

uRGC =

 cos rcalc cos vobs

cos rcalc sin vobs

sin rcalc

!
, uP =

 cos δ0 cos α0

cos δ0 sin α0

sin δ0

!
[15.18]

The direction defined in the reference great-circle frame by v = vobs (= constant) is given
on the tangent plane, in an indirect manner, by θ 2 [0, 2π[, the position angle of the
reference great circle at the reference point. This angle, reckoned counter-clockwise on
the sky from +δ , was computed as the direction of the reference great circle at the point
(v, r) = (vobs, 0) and is given by:

cos θ =
sin i cos v�

1 − sin2 i sin2 v
�1/2 , sin θ =

cos i�
1 − sin2 i sin2 v

�1/2 [15.19]

The standard error refers to the uncertainty of the abscissa in the direction w parallel to
the reference great circle and passing through the reference point:

σv� = σv cos rcalc [15.20]

Transformation to International Celestial Reference System

The positions obtained so far are still referred to arbitrary intermediate frames resulting
from the Hipparcos sphere solutions (i.e. F37.3 for FAST and H37C for NDAC; see
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Table 15.1. Values of the rotation and spin components for the reference frames transformations. The

components of the orientation refer to the epoch T0 = J1991.25.

Orientation (mas) Spin (mas/yr)z }| { z }| {
ε0x ε0y ε0z ωx ω y ωz

N37.5!H37C −20.648 −33.151 +46.719 −0.584 +0.657 +0.508

H37C!ICRS −19.1 −8.5 +20.9 −0.73 +0.05 +0.47

F37.3!ICRS −24.218 −27.532 +56.190 −0.590 −0.453 +3.661

Chapter 16). The published solar system data must, however, use the same reference
system as the stars, namely the International Celestial Reference System, ICRS (Chap-
ter 18). The orientation of P (F37.3 or H37C) with respect to ICRS is given by a time
dependent, small rotation "(t) = "0 + (t − T0)!, where T0 = J1991.25 is the epoch of
the Hipparcos Catalogue. Thus, the final coordinates uICRS, referred to the ICRS, were
obtained by:

uICRS =

 1 εz −ε y

−εz 1 εx

ε y −εx 1

!
uP [15.21]

where εx, ε y, εz are the equatorial components of "(t) for the epoch of the observation. In
principle, the transformation entails also a change of the position angle θ, but this change
would always be less than 0.1 arcsec and was therefore not implemented. The values
of the rotation parameters for the transformations H37C!ICRS and F37.3!ICRS are
listed in Table 15.1.

Comparison of FAST and NDAC Abscissae

The methods applied by FAST and NDAC to process the observations of the solar
system objects were generally very similar. However they differed sufficiently in their
details to prohibit a merging of the two sets of abscissae.

The positions on the grid were not derived in the same way from the signal phases which
implies that the observed positions do not correspond to exactly the same physical point.
This discrepancy depends mainly on the object’s size, and to a lesser extent on its shape,
on its brightness distribution, and on the geometry of the scanning direction relative to
the visible surface. The theoretical differences between the Hipparcos position and the
photocentre were shown in Figure 15.1 for a spherical object of uniform brightness, and
although they are not large, they are not identical for FAST and NDAC.

The systematic phase effect was shown by Söderhjelm & Lindegren (1982) to have
a non-negligible influence on the realisation of the dynamical reference frame from
the Hipparcos observations of solar system objects. As noted previously, these effects
cannot be predicted with sufficient accuracy to be accounted for and could have different
consequences in the FAST and NDAC treatments.

For all these reasons, and in order to avoid introducing additional noise in the data, it
was thought preferable to publish separately the FAST and NDAC results for all the
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Figure 15.7. Comparison of FAST and NDAC abscissae from the reference points in the ICRS. The histogram

represents the normalised difference with a correlation factor of 0.85 (determined from faint stars) and weighted

standard deviations. The solid curve is the corresponding Gaussian of unit variance ∆v /σ∆v 2 N (0.13, 1), the

non-normalised mean offset is h∆vi ' 1.2 mas.

solar system objects. However, from the calibration of the FAST and NDAC procedures
with respect to the stars, it is expected that:

lim
ρ!0

vNDAC ' lim
ρ!0

vFAST ' vphotocentre

which means that the FAST and NDAC abscissae should be very similar for the smallest
planets (ρ << s). Figure 15.7 shows an histogram of the normalised differences between
the FAST and NDAC abscissae. The average of the normalised differences is slightly
positive, corresponding to a systematic difference between the FAST and NDAC ab-
scissae of about 1.2 mas. However, the abscissae are not strictly referred to the same
circles since they have been defined independently by each group. The projections of
the planets may thus be marginally different.

Finally, for objects as large as ' 0.7 arcsec, depending on their actual brightness dis-
tribution, the second harmonic vanishes (see Equation 15.9 and Figure 15.2) and the
corresponding phase ψ of Equation 15.2 becomes meaningless. A consequence of this
was that only NDAC positions could be derived for the planetary satellites J2 Europa
and S6 Titan.

15.5. Photometry of the Solar System Objects

FAST Reduction

The photometric reduction of the solar system objects was done only by the FAST
Consortium, in parallel with that of the stars. The apparent magnitudes in the Hp scale
are provided at a rate of one value for every field transit in exactly the same way as for
the stars and in the same photometric system, using the colour B − V = 0.5 mag for all
the planets (see Chapter 14).
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Figure 15.9. Position of the solar system barycentre during the mission (solid line). Rectangular coordinates of the

barycentre in the ecliptic plane.

However, for the three planetary satellites on the programme, diffusion of the light
of their respective planets considerably perturbed the observations and no satisfactory
solution could be reached. The average instantaneous field of view profile is given for
large offsets in Figure 15.8. With a planet 7 or 8 mag brighter than the satellite and
located only a few hundreds of seconds off the centre of the field of view, there is still
some planetary light perturbing the signal of the satellite. The effect is hard to assess
because the exact attenuation profile is not known in the periphery of the instantaneous
field of view. Figure 15.8 (right) shows the difference between the two magnitudes scales
Hpac and Hpdc after the expected effect due to the apparent size of a satellite has been
removed. The remaining differences, which should be zero, were sampled as a function
of the separation between the satellite and the planet at the time of observation. This
unmodelled difference reflects essentially the residual disturbing light originating from
the planet. The consequence on the photometric measurement is fairly large for any
satellite whatever the separation to such an extent that no reliable magnitude could be
provided.
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Figure 15.10. Distribution of the solar phase angle of the minor planets during the Hipparcos mission. The scanning

law imposed that the observations could only occur in the vicinity of the quadratures, in contrast with the prevailing

situation for ground-based observations.

0 2 4 6

7

7.1

7.2

7.3

0 2 4 6

7

7.2

7.4

Figure 15.11. Folded light curves for (471) Papagena obtained at different epochs. The magnitudes are corrected for

the distance to the Earth (∆) and the Sun (r), and for solar phase angle (α). (a) epoch t ' 530, the circled points
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made about 3 days later.
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Figure 15.12. Magnitude-phase (top) and magnitude-aspect (bottom) relations for minor planet (4) Vesta. The

solid curves in the magnitude-aspect plot correspond to a triaxial ellipsoid model (a : b : c = 1.15 : 1.2 : 1), the dotted

curve corresponds to the synthesis model of ratio (a : b : c = 1.1 : 1.2 : 1) from Magnusson et al. (1994).
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To help interpret the apparent magnitudes of the minor planets, the geometric parame-
ters at the time of observations are also provided with the solutions. This includes the
distance to the solar system barycentre, the distance to the Earth, the phase angle (the
angle between the satellite and the Sun as seen from the minor planet’s centre of mass)
and the apparent diameter, based on the IRAS Catalogue (Tedesco 1989).

The observed apparent magnitudes of minor planets being accurate to a few hundredths
of a magnitude, the geocentric distance of the Hipparcos satellite can be neglected. As
for the Sun, over the observation period, the solar system barycentre was always within
1.6 solar radii of the centre of the Sun, so that the offset distance barycentre-centre of
the Sun may also be disregarded (see Figure 15.9).

The estimator Hpac is also provided for the sake of completeness, although it is not very
useful for planets of large diameter. Transits rejected during the astrometric reduction
are also discarded for the photometric output. All magnitudes are given in the Hp
system and can be transformed to standard V magnitudes with the expressions given in
Tables 14.1 and 14.2.

Minor Planet Brightness Variations

Due to the scanning law of the satellite, the observations of minor planets took place
when the planets were close to their quadratures and were not uniformly distributed
over the rotational phases of the planets. The distribution of the phase angles is shown
in Figure 15.10 for all the observations of the minor planets. The mean value of the
order of 20� is a consequence of the observations having been made near quadrature.

Table 15.2, based on the Asteroids II data base (Magnusson 1989) and its updated
version (Magnusson et al. 1994), indicates what is known about the shapes and poles of
the minor planets, information relevant for the interpretation of the Hipparcos epoch
photometry of the minor planets. Summary statistics related to the conditions of obser-
vations of the 48 minor planets are listed in Table 15.3.

An example of a photometric analysis is shown in Figure 15.11 with the folded light
curves of (471) Papagena. The curves were computed with a rotation period of 7.11 hr
and the magnitudes are absolute, i.e. corrected for the varying distances from the Sun
and the Earth. A correction was also applied for the phase angle to show the variation
with aspect. The variation with the solar phase angle and the aspect angle is illustrated
for (4) Vesta in Figure 15.12. The amplitude of the magnitude-aspect relation is smaller
for objects observed at opposition.

D. Hestroffer, F. Mignard
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Table 15.2. Tholen’s taxonomic classification (Tholen 1989) for Hipparcos minor planets. Poles and shapes

(as by-products of pole determinations) solution, from Asteroids II (Magnusson 1989) and updated version

(Magnusson et al. 1994).

IAU Number Tholen Asteroids II Solution Updated Solution
and Name class data base pole shape version pole shape

(1) Ceres G
p p p p p p

(2) Pallas B
p p p p p p

(3) Juno S
p p p p p p

(4) Vesta V
p p p p p p

(5) Astraea S
p p p p p p

(6) Hebe S
p p p p p p

(7) Iris S
p p p p p p

(8) Flora S
p p

–
p p p

(9) Metis S
p p p p p p

(10) Hygiea C
p

– –
p p p

(11) Parthenope S – – – – – –
(12) Victoria S

p p
–

p p p

(13) Egeria G – – – – – –
(14) Irene S – – – – – –
(15) Eunomia S

p p p p p p

(16) Psyche M
p p p p p p

(18) Melpomene S – – –
p p

–
(19) Fortuna G

p p p p p p

(20) Massalia S
p p p p p p

(22) Kalliope M
p p p p p p

(23) Thalia S – – –
p p p

(27) Euterpe S – – – – – –
(28) Bellona S

p p p p p p

(29) Amphitrite S
p p p p p p

(30) Urania S – – – – – –
(31) Euphrosyne C

p p p p p p

(37) Fides S
p p p p p p

(39) Laetitia S
p p p p p p

(40) Harmonia S – – –
p p p

(42) Isis S – – – – – –
(44) Nysa E

p p p p p p

(51) Nemausa CU – – –
p p p

(63) Ausonia S
p p p p p p

(88) Thisbe CF
p p p p p p

(115) Thyra S – – –
p p p

(129) Antigone M
p p p p p p

(192) Nausikaa S
p p

–
p p p

(196) Philomela S – – –
p p p

(216) Kleopatra M
p p p p p p

(230) Athamantis S – – – – – –
(324) Bamberga CP – – – – – –
(349) Dembowska R

p p p p p p

(354) Eleonora S
p p p p p p

(451) Patientia CU
p p p p p p

(471) Papagena S – – – – – –
(511) Davida C

p p p p p p

(532) Herculina S
p p p p p p

(704) Interamnia F
p p

–
p p p
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Table 15.3. Hipparcos minor planets general statistics on aspect data. Minimum (min), maximum (max)

and median (med) value for the observation epoch, and the apparent magnitude Hpdc.

Num Obs Epoch Magnitude Standard deviation
(IAU) (JD-2440000.0 [day]) (Hpdc) (σHpdc

)

min med max min med max min med max

1 65 7920.570 8522.710 8977.859 7.84 9.20 9.49 0.004 0.009 0.024
2 63 8154.100 8728.980 8934.850 8.51 9.57 10.78 0.003 0.014 0.053
3 60 7909.230 8391.870 9038.870 8.42 10.60 11.55 0.003 0.018 0.036
4 58 8084.980 8351.210 8817.159 7.15 8.26 8.69 0.002 0.006 0.019
5 81 8094.660 8393.780 8832.319 10.23 11.50 12.36 0.005 0.029 0.077
6 91 7870.420 8082.890 8967.080 8.67 10.55 11.67 0.001 0.016 0.048
7 69 7911.560 8560.680 9024.380 8.24 9.83 11.31 0.001 0.013 0.040
8 56 7917.310 8503.030 9035.370 9.94 10.95 11.93 0.006 0.022 0.051
9 40 8142.720 8327.859 8826.890 9.75 10.84 11.90 0.005 0.019 0.033

10 51 8023.670 8479.570 9059.700 10.97 11.57 12.21 0.006 0.026 0.077
11 68 8144.420 8315.500 8823.000 10.71 11.14 12.47 0.006 0.023 0.082
12 24 7880.400 8771.590 8820.340 10.68 11.42 12.33 0.006 0.022 0.055

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 34 8053.010 8506.390 8739.971 11.03 11.95 12.38 0.011 0.032 0.074
14 45 7885.640 8540.890 8795.330 10.08 11.47 12.53 0.006 0.023 0.074
15 83 7882.620 8694.800 9044.960 9.51 10.58 11.60 0.004 0.022 0.067
16 49 7894.530 8559.819 9033.670 10.22 11.59 12.56 0.004 0.034 0.076
18 100 7900.880 8354.020 9059.710 10.08 11.36 12.26 0.006 0.028 0.069
19 30 8087.990 8331.940 8787.159 11.15 12.05 12.78 0.014 0.038 0.092
20 61 7984.580 8538.230 8809.290 8.37 11.32 12.29 0.007 0.026 0.058
22 63 8022.960 8675.730 9009.119 10.76 11.92 12.73 0.009 0.034 0.115
23 66 7876.620 8402.000 9022.460 11.02 12.34 12.83 0.009 0.039 0.098
27 35 7884.310 8240.649 8830.990 10.04 11.41 12.20 0.009 0.022 0.064
28 33 8513.319 8961.450 9009.640 11.81 12.14 12.63 0.011 0.043 0.082
29 74 7986.090 8535.090 9006.689 9.86 10.71 11.44 0.003 0.019 0.069

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 48 7860.230 8289.060 8752.380 10.49 12.03 12.84 0.011 0.039 0.179
31 14 7919.690 7966.870 8298.210 11.06 11.82 12.27 0.021 0.030 0.042
37 32 7883.730 7984.820 8935.730 11.25 11.66 13.01 0.009 0.030 0.079
39 112 7858.510 8396.220 8824.830 10.49 11.29 12.57 0.007 0.021 0.059
40 103 7969.470 8708.609 8805.640 10.68 12.20 12.63 0.009 0.039 0.111
42 51 7973.480 8120.000 8278.280 10.26 11.00 12.48 0.007 0.022 0.067
44 53 8021.540 8586.140 8808.840 9.97 11.52 12.35 0.007 0.029 0.052
51 14 8050.070 8067.220 9033.500 11.64 11.79 12.24 0.010 0.032 0.050
63 12 8279.390 8422.020 8945.390 11.51 11.95 12.50 0.010 0.026 0.057
88 36 7960.780 8169.350 8618.330 11.26 12.06 12.51 0.021 0.041 0.063

115 33 7915.230 8758.230 8973.250 10.98 12.38 12.65 0.011 0.042 0.102
129 40 7899.460 8325.319 8563.950 11.51 12.05 12.55 0.015 0.032 0.062

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

192 32 7916.310 8739.649 8833.640 10.90 11.12 12.15 0.013 0.034 0.074
196 14 7992.570 8139.310 8594.159 11.58 11.93 12.55 0.019 0.037 0.051
216 21 7895.420 8311.500 8359.040 11.37 11.87 12.80 0.008 0.037 0.061
230 35 7908.390 8287.020 8935.980 11.34 11.72 12.44 0.006 0.028 0.066
324 73 8320.710 8325.240 8682.310 9.35 12.11 12.39 0.006 0.028 0.068
349 92 7910.830 8176.370 8634.590 10.28 11.77 12.19 0.009 0.025 0.080
354 98 7899.520 8404.700 9053.119 10.76 11.59 12.55 0.012 0.030 0.088
451 29 8258.271 8632.050 8731.630 11.52 11.91 12.46 0.016 0.033 0.070
471 112 8020.210 8487.649 9024.800 10.84 11.38 12.85 0.005 0.032 0.090
511 64 8046.070 8588.790 9030.040 11.18 12.01 12.66 0.007 0.034 0.107
532 40 7937.440 8398.210 8829.300 10.16 10.91 12.29 0.003 0.021 0.064
704 82 8021.100 8534.090 8735.530 11.07 11.76 12.58 0.008 0.032 0.082
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Table 15.3. Hipparcos minor planets general statistics on aspect data (continued). The distances to the Sun

and to the Earth, the solar phase angle, and the apparent diameter.

Num Distances Solar phase angle Apparent diameter
(IAU) (Sun [AU]) (Earth [AU]) (α [deg]) (ρ [arcsec])

min max min max min med max min med max

1 2.582 2.979 1.864 3.554 14.19 16.09 22.41 0.35 0.40 0.67
2 2.123 3.382 1.733 3.842 13.53 17.43 27.37 0.19 0.29 0.41
3 2.013 3.356 1.309 3.693 14.20 16.65 26.21 0.09 0.12 0.26
4 2.205 2.576 1.712 3.052 17.96 21.77 26.06 0.23 0.28 0.40
5 2.080 2.842 1.369 3.008 15.80 18.02 28.73 0.06 0.08 0.13
6 1.940 2.911 1.207 3.370 14.94 18.99 30.65 0.08 0.13 0.22
7 1.844 2.932 1.131 3.133 16.56 23.29 31.67 0.09 0.12 0.25
8 1.901 2.539 1.447 3.042 17.22 22.72 29.92 0.06 0.08 0.13
9 2.096 2.674 1.371 2.819 19.56 21.35 28.10 0.08 0.12 0.17

10 3.068 3.516 2.564 3.947 13.54 16.08 19.05 0.15 0.18 0.23
11 2.383 2.695 1.815 3.156 15.78 17.78 24.92 0.07 0.11 0.12
12 2.076 2.843 1.421 2.282 16.29 25.16 29.24 0.07 0.09 0.11

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 2.354 2.794 1.755 2.679 18.48 21.63 24.63 0.11 0.13 0.17
14 2.155 3.006 1.454 3.552 14.04 22.34 27.89 0.06 0.09 0.15
15 2.174 3.130 1.865 3.555 13.59 15.12 25.89 0.11 0.16 0.20
16 2.552 3.297 1.901 3.713 14.16 16.77 22.97 0.10 0.12 0.19
18 1.847 2.785 1.495 3.301 15.23 20.64 27.32 0.06 0.08 0.14
19 2.057 2.826 1.711 2.500 16.39 23.22 28.47 0.12 0.15 0.18
20 2.066 2.738 1.555 3.141 17.96 23.02 28.59 0.07 0.08 0.13
22 2.632 3.003 2.071 3.285 15.90 17.76 22.54 0.05 0.06 0.08
23 2.060 3.210 1.641 3.195 13.72 17.79 28.37 0.05 0.06 0.09
27 1.948 2.746 1.225 2.841 17.05 27.21 29.42 0.05 0.07 0.11
28 2.402 2.727 1.932 2.498 19.85 23.21 24.07 0.07 0.08 0.09
29 2.374 2.674 1.648 2.998 17.22 21.82 24.94 0.10 0.14 0.18

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 2.065 2.617 1.344 2.419 16.44 17.87 28.29 0.06 0.08 0.11
31 2.427 3.043 1.786 2.607 17.53 22.61 24.00 0.13 0.15 0.19
37 2.345 3.063 1.592 2.506 14.23 19.33 22.83 0.06 0.08 0.10
39 2.455 3.085 1.912 3.522 13.62 17.64 23.56 0.06 0.09 0.11
40 2.163 2.366 1.445 2.945 18.14 21.83 26.98 0.05 0.06 0.11
42 1.890 2.258 1.110 2.409 20.67 23.54 32.30 0.06 0.11 0.13
44 2.073 2.769 1.375 2.776 20.51 23.48 28.34 0.04 0.04 0.07
51 2.222 2.458 1.688 1.934 19.98 21.23 26.37 0.11 0.12 0.12
63 2.205 2.455 1.689 2.163 19.53 23.52 26.52 0.07 0.08 0.09
88 2.346 2.720 1.704 2.730 17.59 21.58 23.75 0.11 0.14 0.17

115 2.007 2.567 1.339 2.572 21.32 23.01 28.35 0.04 0.05 0.09
129 2.287 2.778 2.052 2.800 18.21 20.86 24.91 0.06 0.07 0.08

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

192 2.144 2.546 1.435 2.083 18.89 19.67 25.90 0.07 0.10 0.10
196 3.029 3.103 2.399 2.948 16.59 18.63 19.24 0.07 0.08 0.08
216 2.230 2.727 1.861 2.763 17.14 19.74 25.94 0.07 0.09 0.10
230 2.272 2.523 1.718 2.494 16.68 18.46 25.26 0.06 0.09 0.09
324 1.771 2.401 0.936 2.970 17.46 18.32 32.60 0.11 0.11 0.36
349 2.678 3.174 2.107 3.620 13.89 14.40 21.29 0.05 0.05 0.09
354 2.479 3.001 1.946 3.593 13.84 18.26 23.16 0.06 0.07 0.11
451 2.845 3.040 2.119 2.719 14.35 17.69 20.29 0.12 0.14 0.15
471 2.279 3.349 1.695 3.155 14.87 17.49 25.28 0.06 0.10 0.11
511 2.631 3.351 2.207 3.562 14.61 18.48 22.05 0.13 0.16 0.21
532 2.329 3.135 1.906 3.654 14.22 20.32 24.74 0.09 0.13 0.17
704 2.614 3.118 2.137 3.364 14.05 18.02 22.04 0.14 0.16 0.21
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