
PLUTO v. 4.0 (November 2012)

User’s Guide
(http://plutocode.ph.unito.it)

Developer: A. Mignone1, 2
(mignone@ph.unito.it)

Contributors: C. Zanni2 (AMR) (zanni@oato.inaf.it)

P. Tzeferacos1 (Viscosity, MHD, STS, Finite-Difference)
(petros.tzeferacos@ph.unito.it)

G. Muscianisi3 (Parallelization, I/O)
T. Matsakos4 (Resistivity, Thermal Conduction, STS)
O. Tesileanu5 (Cooling)
B. Vaidya6 (pyPLUTO visualization tool)

1 Dipartimento di Fisica Generale, Turin University, Via P. Giuria 1 - 10125 Torino (TO), Italy
2 INAF Osservatorio Astronomico di Torino, Via Osservatorio, 20 10025 Pino Torinese (TO), Italy
3 Consorzio Interuniversitario CINECA, via Magnanelli, 6/3, 40033 Casalecchio di Reno (Bologna), Italy
4 CEA, IRAMIS, Service Photons, Atomes et Molècules, 91191 Gif-sur-Yvette, France
5 Department of Physics, University of Bucharest, Str. Atomistilor nr. 405, RO-077125 Magurele, Ilfov, Romania
6 School of Physics and Astronomy, University of Leeds, Leeds LS29JT

Terms & Conditions of Use

PLUTO is distributed freely under the GNU general public license. Code’s development and support
requires a great deal of work and for this reason we expect PLUTO to be referenced and acknowledged
by authors who use it for their publications. Co-authorship may be solicited for those publications
demanding considerable additional support and/or changes to the code.

1

Contents

0 Quick Start 5
0.1 Downloading and unpacking PLUTO . 5
0.2 Running a simple shock-tube problem . 5
0.3 Running the Orszag-Tang MHD vortex test . 6
0.4 Setting up your own test problem . 7
0.5 Supplied test problems . 8
0.6 Migrating from PLUTO 3 to PLUTO 4 . 10

1 Introduction 12
1.1 System Requirements . 12
1.2 Directory Structure . 13
1.3 Configuring PLUTO . 14
1.4 Compiling & Running the Code . 14

1.4.1 Command line options . 15
1.5 Modifying the Distribution Source Files . 16

2 Problem Setup 17
2.1 STEP # 1: header file definitions.h . 17

2.1.1 PHYSICS . 17
2.1.2 DIMENSIONS& COMPONENTS. 17
2.1.3 GEOMETRY. 18
2.1.4 BODYFORCE . 18
2.1.5 COOLING. 18
2.1.6 INTERPOLATION . 18
2.1.7 TIME EVOLUTION . 19
2.1.8 DIMENSIONALSPLITTING . 20
2.1.9 NTRACER. 20
2.1.10 USERDEF PARAMETERS. 20
2.1.11 Additional Switches . 21

2.2 STEP # 2: makefile creation . 24
2.2.1 MPI Library (Parallel) Support . 24
2.2.2 HDF5 Library Support . 25
2.2.3 PNG Library Support . 25
2.2.4 Including Additional Files: local make . 26

2.3 STEP # 3: The initialization file pluto.ini . 27
2.3.1 The [Grid] block . 28
2.3.2 The [Chombo Refinement] Block . 30

2.3.3 The [Time] Block . 30
2.3.4 The [Solver] Block . 30
2.3.5 The [Boundary] Block . 31

2.3.6 The [Static Grid Output] Block . 32

2.3.7 The [Chombo HDF5 output] Block . 33

2.3.8 The [Parameters] Block . 33

2

2.4 STEP # 4: Problem Configuration: init.c . 34
2.4.1 The Init() function . 34
2.4.2 The UserDefBoundary() function . 37
2.4.3 The BodyForce...() functions . 41
2.4.4 The Analysis() function . 42

3 Basic Physics Modules 43
3.1 The HD Module . 43

3.1.1 Equations . 43
3.1.2 Available Options . 44

3.2 The MHD Module . 46
3.2.1 Equations . 46
3.2.2 Available Options . 47
3.2.3 Assigning Magnetic Field Components . 48
3.2.4 Controlling the ∇ ·B = 0 Condition . 49
3.2.5 Background Field Splitting . 52

3.3 The RHD Module . 54
3.3.1 Equations . 54
3.3.2 Available options . 55

3.4 The RMHD Module . 56
3.4.1 Equations . 56
3.4.2 Available Options . 56

4 Non Ideal Effects 57
4.1 Viscosity . 57

4.1.1 Viscous Coefficients . 58
4.2 Resistivity . 58
4.3 Thermal Conduction . 58

4.3.1 Dimensions . 59
4.4 Numerical Integration of Diffusion Terms . 60

4.4.1 Explicit Time Stepping . 60
4.4.2 Super-Time-Stepping (STS) . 60

4.5 Cooling . 61
4.5.1 Units and Dimensions . 61
4.5.2 Power Law Cooling . 64
4.5.3 Tabulated Cooling . 65
4.5.4 Simplified Non-Equilibrium Cooling: SNEq . 65
4.5.5 Multi-Ion Non-Equilibrium Cooling: MINEq . 66

5 Additional Modules 68
5.1 The ShearingBox Module . 68

5.1.1 Using the module . 68
5.2 The FARGO Module . 69

5.2.1 Using the Module . 69
5.2.2 A Note on Parallelization . 69

5.3 High-order Finite Difference Schemes . 71
5.3.1 WENO schemes . 71
5.3.2 LimO3 & MP5 . 72

6 Output and Visualization 73
6.1 Output Data Formats . 73

6.1.1 Binary Output: dbl or flt data formats . 74
6.1.2 HDF5 Output: dbl.h5 or flt.h5 data formats . 74
6.1.3 VTK Output: vtk data format . 74
6.1.4 ASCII Output: tab Data format . 75
6.1.5 Graphic Output: ppm and png data formats . 75

3

6.1.6 The grid.out output file . 75
6.2 Customizing your output . 76

6.2.1 Changing Attributes . 77
6.3 Visualization . 78

6.3.1 Visualization with IDL . 78
6.3.2 Data Visualization with Gnuplot . 80
6.3.3 Data Visualization with VisIt or ParaView . 81
6.3.4 Data Visualization with pyPLUTO . 82

7 Adaptive Mesh Refinement (AMR) 84
7.1 Installation . 84

7.1.1 Installing HDF5 . 85
7.1.2 Installing and Configuring Chombo . 85

7.2 Configuring PLUTO-Chombo . 86
7.2.1 Header File definitions.h . 87
7.2.2 AMREN SWITCH . 87
7.2.3 The pluto.ini initialization file . 87
7.2.4 Controlling Refinement . 89

7.3 Running PLUTO-Chombo . 89
7.4 Reading and Visualizing HDF5 Files . 89

7.4.1 Visualization with IDL . 90

A Equations in Different Geometries 93
A.1 MHD Equations . 93

A.1.1 Cartesian Coordinates . 93
A.1.2 Polar Coordinates . 94
A.1.3 Spherical Coordinates . 95

A.2 (Sperical) Relativistic MHD Equations . 96
A.2.1 Cartesian Coordinates . 96
A.2.2 Polar Coordinates . 96
A.2.3 Spherical Coordinates . 97

4

0. Quick Start

0.1 Downloading and unpacking PLUTO

PLUTO can be downloaded from http://plutocode.ph.unito.it under free registration. Once downloaded,
extract all the files from the archive:

˜> gunzip pluto-xx.tar.gz
˜> tar xvf pluto-xx.tar

this will create the folder PLUTO/ in your home directory. At this point, we advise to set the environment
variable PLUTO DIR to point to your code directory. Depending on your shell (e.g. tcsh or bash) use
either one of

˜> setenv PLUTO_DIR /home/user/PLUTO # if you’re using the t csh shell, or
˜> export PLUTO_DIR=/home/user/PLUTO # if you’re using the bash shell.

0.2 Running a simple shock-tube problem

PLUTO can be quickly configured to run one of the several test problems provided with the distribution.
Assuming that your system satisfies all the requirements described in the next chapter (i.e. C compiler,
Python, etc..) you can quickly setup PLUTO in the following way:

• change directory to any of the test problems under PLUTO/Test Problems, e.g.

˜> cd $PLUTO_DIR/Test_Problem/HD/Sod

• run the Python script using

˜/PLUTO/Test_Prob/HD/Sod> python $PLUTO_DIR/setup.py

and select “Setup problem” from the main menu, see Fig. 1.2. You can confirm (by pressing Enter)
or modify the default setting using your arrow keys.

• Once you return to the main menu, select “Change makefile”, choose a suitable makefile (e.g.
Linux-i686.gcc.defs) and press enter.

All the information relevant to the specific problem should now be stored in the four files init.c
(assigns initial condition and user-supplied boundary conditions), pluto.ini (sets the number of
grid zones, Riemann solver, output frequency, etc.), definitions.h (specifies the geometry, number
of dimensions, interpolation, time stepping scheme, and so forth) and the makefile.

• exit from the main menu (“Quit” or press ’q’) and type

˜/PLUTO/Test_Prob/HD/Sod> make

to compile the code.

• you can now run the code by typing

˜/PLUTO/Test_Prob/HD/Sod> ./pluto

At this point, PLUTO reads the initialization file pluto.ini and starts integrating. The run should
take a few seconds (or less) and the integration log should be dumped to screen.

5

CHAPTER 0. QUICK START 6

Data can be displayed in a number of different ways. If you have, for example, Gnuplot (v 4.2 or higher)
you can display the density output from the last written file using

gnuplot> plot "data.0001.dbl" bin array=400:400:400 form ="%double" ind 0

where ind 0,1,2 may be used to select density, velocity or pressure. If you have IDL installed on your
system, you can easily plot the density by1:

IDL> pload,1
IDL> plot,x1,rho

The IDL procedure pload is provided along with the code distribution.

0.3 Running the Orszag-Tang MHD vortex test

• change directory to PLUTO/Test Problems/MHD/Orszag Tang,

• run the Python script:

˜/PLUTO/Test_Problem/MHD/Orszag_Tang> python $PLUTO_D IR/setup.py

select “Setup problem” and confirm the default setting by pressing enter;

• Once you return to the main menu, select “Change makefile” and choose a suitable makefile (e.g.
default.defs) and press enter.

• exit from the main menu (“Quit” or press ’q’). Edit pluto.ini and, under the [Grid] block, lower the
resolution from 512 to 200 in both directions (X1-grid and X2-grid). Change single file, in
the “dbl” output under the [Uniform Grid Output] block, to multiple files.

Last, edit definitions.h and change PRINT TO FILE from YES to NO.

• compile the code:

˜/PLUTO/Test_Problem/MHD/Orszag_Tang> make

• If compilation was successful, you can now run the code by typing

˜/PLUTO/Test_Problem/MHD/Orszag_Tang> ./pluto

At this point, PLUTO reads the initialization file pluto.ini and starts integrating. The run should
take a few minutes (depending on the machine you’re running on) and the integration log should
be dumped to screen.

You can display data (e.g. density) with Gnuplot (v 4.2 or higher) from the last written file using

gnuplot> set pm3d map # set map style drawing
gnuplot> set palette gray # set color to black and white
gnuplot> splot "data.0001.dbl" bin array=200x200 format= "%double"

If you have IDL installed, you can easily display pressure from the last written output files with

IDL> pload,1
IDL> display,x1=x1,x2=x2,prs

Several other visualization options are described in more details in §6.3.

1You need to include PLUTO/Tools/IDL into your IDL search path, §6.3.1

CHAPTER 0. QUICK START 7

0.4 Setting up your own test problem

As an illustrative example, we show how PLUTO can be configured to run a 2D Cartesian hydrody-
namic blast wave from scratch. We assume that you have already followed the steps in §0.1.

• First, in your home or work directory, you need to create a folder which will contain the necessary
files for the test. For instance,

˜> mkdir Blastwave
˜> cd Blastwave

• You can now start the setup process by invoking the Python script to set dimensions, geometry,
numerical scheme and so on:

˜/Blastwave> python $PLUTO_DIR/setup.py

and select “Setup problem” from the main menu.

Using the arrows keys make the following changes: set “DIMENSIONS” and “COMPONENTS” to
2, “USER DEF PARAMETERS” to 3 and leave the other fields as they are. User-defined parameters
will be used later in the initial condition routine. Press enter to confirm the changes and proceed
to the following screen menu. Since we don’t have to change anything here you can press enter
once more.

• We now set the names of the 3 auxiliary parameters previously introduced. To do so, use the arrow
keys to select each of them and explicitly write their names: P IN, P OUT and GAMMA and press
enter to confirm.

• Finally, we complete the python session setting the architecture for the makefile. In the makefile
menu choose your system configuration (e.g. Linux i686.defs for Linux). Press enter to confirm.

You are now done with the Python script and can exit by pressing either “q” or selecting quit. At this
point you should find the following four files inside your Blastwave folder: definitions.h, init.c, makefile,
pluto.ini, sysconf.out

Next, we need to edit the two files pluto.ini and init.c. The first one defines the computational domain
and certain properties of the run (i.e. time of integration, first timestep etc). The second one sets the
initial conditions for the blast wave problem: a circular region of high pressure in a lower pressure
ambient.

Edit pluto.ini to make the following changes:

• The domain should span from -1 to 1 in both dimensions with 200 points in each direction.

X1-grid 1 -1.0 200 u 1.0
X2-grid 1 -1.0 200 u 1.0

• The simulation should stop when time reaches 0.04:

tstop 0.04

with the first timestep being

first_dt 1.e-6

Save the files every t=0.004, in double precision and in multiple files format.

dbl 0.004 -1 multiple_files

• At the end of the file, set the numerical values for the 3 parameters P IN (the high pressure of a
region yet to be specified), P OUT (the ambient pressure) and GAMMA (polytropic index):

CHAPTER 0. QUICK START 8

P_IN 8.e2
P_OUT 8.0
GAMMA 1.666666666666667

Save and exit the editor.
Next, you need to edit init.c.

• Define inside the function Init() the radius r, a floating point value which we will be used to set
a circular region of high pressure.

double r;

• Set the global variable g gamma(polytropic index) and the radius r. Define the initial ambient
pressure (P OUT) and put an IF statement to specify the high pressure region inside a circle of r=
0.3 (P IN):

g_gamma = g_inputParam[GAMMA]; / * calls the auxiliary parameter GAMMA * /
r = x1 * x1 + x2 * x2;
r = sqrt(r);

us[RHO] = 1.0; / * initial density array * /
us[VX1] = 0.0; / * initial Vx array * /
us[VX2] = 0.0; / * initial Vy array * /
us[VX3] = 0.0; / * initial Vz array * /
us[PRS] = g_inputParam[P_OUT]; / * calls the auxiliary parameter P_OUT * /

if (r <= 0.3) us[PRS] = g_inputParam[P_IN]; / * calls the input parameter P_IN * /

Save and exit the editor. Compile the code and run PLUTO with a the following set of commands:

˜/Blastwave> make
˜/Blastwave> ./pluto

In order to visualize the results follow the instructions described in the two previous sections.

0.5 Supplied test problems

Several examples and test problems may be found under PLUTO/Test Problems/.

• HD/Sod: the Sod shock-tube problem;

• HD/Sedov: the Sedov-Taylor blast wave problem in either cylindrical or spherical geometries;

• HD/Rayleigh Taylor: a 2D setup of the Rayleigh-Taylor instability;

• HD/Wind Tunnel: a Mach 3 wind tunnel with a step;

• HD/Vortex: advection of an isentropic vortex;

• HD/Mach Reflection: reflection of a strong shock on a wedge;

• HD/Jet: a simple two-parameter jet configuration in axisymmetric coordinates;

• HD/Disk Vortex: vortex dynamics in a 2D Keplerian disk in polar coordinates;

• HD/Stratified Atmosphere: hydrostatic equilibrium atmosphere in 2D cylindrical or 3D Cartesian
coordinates using a geometrically-smoothed point-mass gravitational field;

• HD/Viscosity/Taylor Couette: Taylor vortex formation in an axial flow between two rotating cylin-
ders.

• MHD/Orszag Tang: the Orszag-Tang MHD vortex problem;

• MHD/CP Alfven: circularly polarized Alfven waves;

CHAPTER 0. QUICK START 9

• MHD/Field Loop: advection of a field loop in a periodic domain;

• MHD/Rotor: the 2D MHD rotor problem;

• MHD/Jet: a Mach 20 magnetized jet in cylindrical axisymmetric coordinates;

• MHD/Shock Cloud: interaction of a strong magneto-sonic shock with a circular cloud;

• MHD/Shearing Box: an example of the two-dimensional magneto-rotational instability using the
shearing box module;

• MHD/Resistive MHD/Field Diffusion: a 3-D test for magnetic field diffusion;

• MHD/Torus: a magnetized accreting torus in 2.5D spherical/cylindrical coordinates or 3D Carte-
sian;

• MHD/Thermal conduction/TCfront: propagation of a thermal conduction front;

• MHD/Thermal conduction/Blast: blast wave with thermal conduction

• RHD/Sedov2D: relativisitc blast wave in 2D Cartesian coordinates;

• RMHD/KH: an example of a relativistic Kelvin-Helmholtz instability;

• RMHD/Blast: a two- or three-dimensional magnetized relativistic blast wave;

• RMHD/Toroidal Jet: axisymmetric setup for a relativistic jet with a toroidal magnetic field;

Each test problem has (usually) more than one configuration set with a different Riemann solver, nu-
merical scheme, etc... They are stored in pluto nn.ini, definitions nn.h, where nn = 01, 02, ...; just copy the
two files to pluto.ini and definitions.h and run the Python script to generate the corresponding makefile.

CHAPTER 0. QUICK START 10

0.6 Migrating from PLUTO 3 to PLUTO 4

Users familiar with PLUTO version 3 should provide a few modifications in order to upgrade to the
current release. The most important changes are listed below.

• Naming convention has been largely revised in order to adhere to a more consistent and better
orgainzed programming style. This resolves the mixed-up confusion between function, global
variable and macro names present in previous versions of PLUTO . In particular:

1. Function names have been changed from all capital letter style to upper CamelCase style, e.g.,
FUNCTION NAME() → FunctionName() . This affects the whole code and, in particular, also
the functions contained inside init.c. For instance:

INIT() → Init()

ANALYSIS() → Analysis()

USERDEF BOUNDARY() → UserDefBoundary()

The argument list inside the previous functions has also been changed, see §2.4 for details.

2. Macro names retain the capital letter style, e.g.,

dmin() → MIN()

dmax() → MAX()

dsign() → DSIGN()

Array 2D() → ARRAY 2D()

Besides, macro names giving the array index of a variable now use a three-letter word:

– DN→ RHO

– PR→ PRS

– VX→ VX1

– ...

See Table 2.4 in §2.4.1. However we still keep the old two-letter notation (e.g. “DN” or “PR”)
for backward compatibility.

3. Global variables have been renamed using lower camelCase style and are prefixed with “g ”,
see the header file globals.h. For instance:

gmm→ g gamma

aux → g inputParam

C ISO → g isoSoundSpeed

...

The only exception is for integer global variables that are initialized once at the beginning
of the computations (e.g. number of points NX1 TOT...NX3 TOT, starting and final indices
IBEG..KEND , and so forth) and do not change anymore during the computation.

4. Variable names referring to the number of points and using the notation “X,Y,Z ” have been
replaced with the more general syntax “X1, X2, X3 ” whenever possible. Similarly, vari-
ables giving grid indices use the notation “I, J, K ”:

(NX, NY, NZ) → (NX1, NX2, NX3);

(NX TOT, NY TOT, NZ TOT) → (NX1 TOT, NX2 TOT, NX3 TOT);

(NX PT, NY PT, NZ PT) → (g i, g j, g k);

• PLUTO 4.0 uses Doxygen as the standard documentation system which, from now on, is meant to
replace the old Developer’s guide. The API reference guide, although not complete, can be found
on the web or in the local distribution under PLUTO/Doc/Doxygen/html/index.hml.

• The BODY FORCE() function has been replaced by two new functions, BodyForceVector() and
BodyForcePotential() (see §2.4.3) included inside the file init.c:

CHAPTER 0. QUICK START 11

• Limiters are no longer functions and can be specified in your definitions.h header by macro names
with upper-case letter, e.g., minmod lim→ MINMOD LIM , etc...

• ArrayLib has been removed as a separate library and a more compact, largely debugged subset
has been directly incorporated into the code, under the directory Src/Parallel/.

• The structure of the system-dependent configuration file used by the makefile is different, see §2.2.

• I/O has slightly been modified in the following ways:

– variable names follow the same three-letter patterns used above;

– the output grid file grid.out employs a different format, see §6.1.6.

• The command line switch -restart always requires the restart file number, -restart n .

• Assignment of initial condition from external files uses a different, more flexible approach, §2.4.1.1.

• Visualization routines written in the IDL programming language follows the same naming con-
vention adpoted by the code.

• Chombo 3.1 is required for Adaptive Mesh Refinement, see Chapter 7.

1. Introduction

PLUTO is a finite-volume / finite-difference, shock-capturing code designed to integrate a system of
conservation laws

∂U

∂t
= −∇ · T(U) + S(U) , (1.1)

where U represents a set of conservative quantities, T(U) is the flux tensor and S(U) defines the source
terms [28, 29]. An equivalent set of primitive variables V is more conveniently used for assigning initial
and boundary conditions. The explicit form of U , V , T(U) and S(U) depends on the particular physics
module selected:

• HD: Newtonian (classical) hydrodynamics, §3.1;

• MHD: ideal/resistive magnetohydrodynamics, §3.2;

• RHD: special relativistic hydrodynamics, §3.3;

• RMHD: special (ideal) relativistic magnetohydrodynamics, §3.4;

PLUTO adopts a structured mesh approach for the solution of the system of conservation laws (1.1).
Flow quantities are discretized on a logically rectangular computational grid enclosed by a boundary
and augmented with guard cells or ghost points in order to implement boundary conditions on a given
computational stencil. Computations are done using double precision arithmetic.

The grid can be either static or dynamically adaptive as the flow evolves. In the static grid version
PLUTO comes as a stand-alone package entirely written in the C programming language, see [28] for
a comprehensive description. In the adaptive grid version the code relies on the Chombo library for
adaptive mesh refinement (AMR) written in C++ and Fortran (Chapter 7). A thorough description of
the AMR implementation is given in [29].

Starting with PLUTO 4, we employ Doxygen as the standard documentation system and no longer
distribute the Developer’s Guide. The Application Programming Interface (API) reference guide can be
found in PLUTO/Doc/Doxygen/html/index.hml.

1.1 System Requirements

PLUTO can run on most platforms but some software prerequisites must be met, depending on the
specific configuration you intend to use. The minimal set to get PLUTO running on a workstation with
a static grid (no AMR) requires:

- Python (V. 2.0 or higher) + ncurses libraries;

- (ANSI) C compiler;

- GNU make (gmake);

These are usually installed by default on most Linux/Unix platforms. A comprehensive list is shown in
Table 1.1.

Starting with PLUTO 4.0 parallelization is handled internally and ArrayLib, used in previous versions
of the code, is no longer necessary. The Chombo library is required for computations making use of
Adaptive Mesh Refinement (Chapter 7), while the PNG library should be installed only if PNG output
is desired. The HDF5 library is required for I/O with the Chombo library and may also be used with
the static grid version of the code.

PLUTO has been successfully ported to several parallel platforms including Linux, Windows/Cygwin,
Mac OS X, Beowulf clusters, IBM power4 / power5 / power6, SGI Irix, IBM BluGene/P and several oth-
ers. Figure 1.1 shows the strong scaling on a BlueGene/P machine up to 32, 768 processors on a periodic
domain with 5123 computational grid zones.

12

CHAPTER 1. INTRODUCTION 13

Static Grid Adaptive Grid
serial parallel serial parallel

Python (> 2.0) yes yes yes yes
C compiler yes yes yes yes
C++ compiler – – yes yes
Fortran compiler – – yes yes
GNU make yes yes yes yes
MPI library – yes – yes
Chombo library – – yes yes
HDF5 library opt opt yes yes
PNG library opt opt – –

Table 1.1: Software requirements for different applications of PLUTO. Here “opt” stands for optional, ”serial“ refers to single-
processor runs and ”parallel“ to multiple-processor architectures.

Figure 1.1: Strong scaling of
PLUTO on a periodic domain
problem with 5123 grid zones. Left
panel: average execution time (in
seconds) per step vs. number of
processors. Right panel: speedup
factor computed as T1/TN where
T1 is the (inferred) execution time of
the sequential algorithm and TN is
the execution time achieved with N
processors. Code execution time is
given by black circles (+ dotted line)
while the solid line shows the ideal
scaling.

1.2 Directory Structure

Once unpacked, your PLUTO/ root directory should contain the following folders:

• Config/: contains machine architecture dependent files, such as information about C compiler,
flags, library paths and so on. Important for creating the makefile;

• Doc/: documentation directory;

• Lib/: repository for additional libraries;

• Src/: main repository for all *.c source files with the exception of the init.c file, which is left to the
user. The physics module source files are located in their respective sub-directories: HD/ (classi-
cal hydrodynamics), RHD/ (special relativistic hydrodynamics), MHD/ (magnetohydrodynamics),
RMHD/ (relativistic magnetohydrodynamics). Cooling, viscosity, thermal conduction and addi-
tional physics models are located under the folders with similar names (e.g. Cooling/, Viscosity/,
Thermal Conduction). The Templates/ directory contains templates for the user-dependent files such
as init.c, pluto.ini, makefile and definitions.h;

• Tools/: Collection of useful tools, such as Python scripts, IDL visualization routines and binary
conversion tools;

• Test Problem/: a directory containing several test-problems commonly used for code verification.

PLUTO should be compiled and executed in a separate working directory which may be anywhere on
your local hard drive.

Although most of the current algorithms can be considered in their final stable version, the code is
under constant development and updates are released once or twice per year. When upgrading to a

CHAPTER 1. INTRODUCTION 14

Option Description

- -with-chombo enables support for adaptive mesh refinement (AMR) using the Chombo library, Chapter 7;

- -with-fd enables support for finite difference schemes, §5.3

- -with-fargo enables support for the FARGO-MHD module, §5.2;

- -with-sb enables support for the shearing-box module, §5.1;

- -no-curses
disables the curses terminal control feature of the Python script. Instead a shell-based setup will
be used. This switch can be used to circumvent problems with the ncurses library present on
some systems (e.g. Snow Leopard 10.6);

Table 1.2: Command line options available when running the Python setup script.

newer version of PLUTO , it is recommended that the entire PLUTO/ directory tree be deleted. Syntax
changes are usually listed in the file CHANGES, in the PLUTO/ root directory.

1.3 Configuring PLUTO

In order to configure and setup PLUTO for a particular problem, four main steps have to be followed;
the resulting configuration will then be stored in 4 different files, part of your local working directory:

1. definitions.h: header file containing all problem-dependent flags required at compilation stage
(physics module, geometry, dimensions, etc.), see §2.1;

2. makefile: needed to compile PLUTO . It depends on your system architecture, §2.2;

3. pluto.ini: startup initialization file containing run-time parameters (grid size, CFL,..., see §2.3);

4. init.c: implements initial, boundary conditions, etc..., see §2.4.

Chapter 2 gives a detailed description for each step. The Python script setup.py must be used for
step 1 and 2 and the remaining files (pluto.ini and init.c, step 3 and 4) should be appropriately edited by
the user. Templates for all four files can be found in the Src/Templates/ directory. Several examples are
located in the test directories under Test Problem/.

In order to run the Python script anywhere from your hard disk we recommend to set the shell
variable PLUTO DIR to point to your PLUTO distribution. Depending on your environment shell, use
either one of

˜> setenv PLUTO_DIR /home/user/PLUTO # if you’re using tcsh shell
˜> export PLUTO_DIR=/home/user/PLUTO # if you’re using bas h shell

The setup.py script can now be invoked with

˜/MyWorkDir > python $PLUTO_DIR/setup.py [options]

Command line options are listed in Table 1.2 or can be briefly described by invoking setup.py with
- -help . By default the Python script uses the ncurses library for enhanced terminal control. However,
this option may be turned off by invoking the setup script with the - -no-curses switch. You should
then1 see the menu shown in Fig. 1.2. Additional menus, depending on the physics module, will display
later.

1.4 Compiling & Running the Code

After the four steps described in §2.1–§2.4 have been completed, you can compile PLUTO in your work-
ing directory by typing

1Python will first create an architecture-dependent file named sysconf.out containing system-related information: this file does
not have any specific purpose but may be helpful for the user. Whenever an internet connection is available, Python will also
notify if new versions of the code are available.

CHAPTER 1. INTRODUCTION 15

Figure 1.2: Python script

main menu.

˜/MyWorkDir> make # ’gmake’ is also fine

It is important to remember that the makefile created by Python (see §2.2) guarantees that your working
directory is always searched before PLUTO/Src. This turns out to be useful when modifying PLUTO
source files (§1.5).

If compilation is successful, type

˜/MyWorkDir> ./pluto [flags]

for a single processor run, or

˜/MyWorkDir> mpirun [...] ./pluto [args]

for a parallel run; [...] are options given to MPI, such as number of processors, etc, while [args] are
command line options specific to PLUTO , see Table 1.3. For example,

˜/MyWorkDir> ./pluto -restart 5 -maxsteps 840

will restart from the 5-th double precision output file and stop computation after 840 steps.
During execution, the integration log will look something like:

...
step:0 ; t = 0.0000e+00 ; dt = 1.0000e-04 ; 0 % ; [0.000000, 0]
step:1 ; t = 1.0000e-04 ; dt = 1.0000e-04 ; 0 % ; [1.236510, 10]
step:2 ; t = 2.0000e-04 ; dt = 1.1000e-04 ; 0 % ; [1.236510, 7]
step:3 ; t = 3.1000e-04 ; dt = 1.1000e-04 ; 0 % ; [1.236510, 6]

...

where step gives the current integration step, t is the current integration time, dt is the current time
step, n% is the percentage of integration. The two numbers in square brackets are, respectively, the
maximum Mach number and maximum number of iterations required by the Riemann solver during the
previous step. For non-iterative Riemann solvers, the last number will always display 0. The maximum
Mach number is a very sensitive function of the numerical method it may be used as a “robustness”
indicator. Very large Mach numbers or rapid variations usually indicate problems and/or fixes during
the computation.

1.4.1 Command line options

When running PLUTO , a number of command-line switches can be given to enable or disable certain
features at run time. Some of them are available only in the static grid version, see Table 1.3 for a
description of the available flags.

CHAPTER 1. INTRODUCTION 16

Option Description work w/ AMR

-dec n1 [n2] [n3]

Enable user-defined parallel decomposition mode. The integers n1,
n2 and n3 specify the number of processors along the x1, x2, and x3
directions. There must be as many integers as the number of dimen-
sions and their product must equal the total number of processors
used by mpirun or an error will occurr.

No

-i fname Use fname as initialization file instead of pluto.ini. Yes

-h5restart n
Restart computations from the n-th output file in HDF5 double preci-
sion format (.dbl.h5).

Yes

-makegrid Generate grid only, do not start computations. No

-maxsteps n Stop computations after n steps. Yes

-no-write Do not write data to disk. Yes

-no-x1par,
-no-x2par,
-no-x3par

Do not perform parallel domain decomposition along the x1, x2 or x3
direction, respectively.

No

-restart n
Restart computations from the n-th output file in double in precision
format (.dbl).

No

-show-dec Show domain decomposition when running in parallel mode. No

-x1jet,
-x2jet,
-x3jet

Exclude from integration regions of zero pressure gradient that ex-
tends up to the end of the domain in the x1, x2 or x3 direction, re-
spectively. This option is specifically designed for jets propagating
along one of the coordinate axis. In parallel mode, parallel decompo-
sition is not performed along the selected direction.

No

-xres n1
Set the grid resolution in the x1 direction to n1 zones by overriding
pluto.ini. Cell aspect ratio is preserved by modifying the grid resolu-
tion in the other coordinate directions accordingly.

Yes

Table 1.3: Command line options available when running PLUTO . Compatibility with AMR version is given in the last column.
†: on parallel architectures only

1.5 Modifying the Distribution Source Files

PLUTO source files are compiled directly from the PLUTO/Src directory. Should you need to modify a
C source file other than your init.c, we strongly advise to copy the file in question to your local working
directory, since the latter is always searched before PLUTO/Src during the compilation phase. In other

words, if you want to modify say, boundary.c, copy the file to your working area and introduce the
appropriate changes. When make is invoked, your local copy of boundary.c is compiled since it has
priority over PLUTO/Src/boundary.c which is actually ignored. In such a way, you can keep track of the
problem dependent modification, without affecting the original distribution.

Note, however, that header files (*.h or *.H) do not follow the same convention and should be modi-
fied in their original directory.

2. Problem Setup

This chapter explains how to create the four files (definitions.h, makefile, pluto.ini and init.c) required to
compile and run PLUTO .

2.1 STEP # 1: header file definitions.h

The header file definitions.h is created by the Python script setup.py by selecting Setup problem (see
Fig. 2.1). If you do not have an existing definitions.h, a new one will be created for you, otherwise the
Python script will try to read your current setup from it.

Figure 2.1: The Setup prob-
lem menu, needed for your def-
initions.h and makefile creation;
by moving the arrow keys
you should be able to browse
through different options.

The header file definitions.h also contains other more advanced switches that are not accessible via
the Python script (§2.1.11) and should be changed manually. We now describe the options accessible
through the Python script.

2.1.1 PHYSICS

Specifies the fluid equations to be solved. The available options are:

• HD: classical hydrodynamics described by the Euler equations, §3.1;

• MHD: single fluid, ideal/resistive magnetohydrodynamics, §3.2;

• RHD: special relativistic hydrodynamics, §3.3;

• RMHD: special relativistic magnetohydrodynamics, §3.4.

2.1.2 DIMENSIONS & COMPONENTS

DIMENSIONSsets the number of spatial dimensions of your problem whereas COMPONENTSsets the
number of vector components (such as velocity and magnetic field) present in the integration. Usually
DIMENSIONS=COMPONENTS, but one can also have more COMPONENTSthan DIMENSIONS. This is the
case, for example, when the “2 + 1

2
D” formalism is used, where integration is performed along the

first two coordinates (say x, y) but the fluid has a non-vanishing velocity component along the third
direction as well (say ∂vz/∂x, ∂vz/∂y 6= 0). An example is an axisymmetric 2-D cylindrical problem

17

CHAPTER 2. PROBLEM SETUP 18

(such as a disk or a torus) in the (r, z) plane with a uniform rotation in the azimuthal direction φ (where
it is assumed ∂/∂φ = 0). In any case it is required that DIMENSIONS≤ COMPONENTS.

2.1.3 GEOMETRY

Sets the geometry of the problem. Spatial coordinates are generically labeled with x1, x2 and x3 and
their physical meaning depends on the value assigned to GEOMETRY:

• CARTESIAN : Cartesian coordinates {x1, x2, x3} = {x, y, z};

• CYLINDRICAL: cylindrical axisymmetric coordinates {x1, x2} = {r, z} (1 or 2 dimensions);

• POLAR: polar cylindrical coordinates {x1, x2, x3} = {r, φ, z};

• SPHERICAL: spherical coordinates {x1, x2, x3} = {r, θ, φ}.

Note that when DIMENSIONS= 2, the third coordinate x3 is meaningless and will be set to zero
(similarly in 1-D x2 and x3 do not play any role). Whenever present, however, the φ component of
vectors (both in spherical and cylindrical coordinates) is integrated by discretizing the equations in
angular momentum conserving form.

We warn that non-Cartesian geometries are handled better when a multi-stage unsplit integrator
(i.e. Runge-Kutta) is used, especially if angular coordinates are present and/or steady state solutions
are sought.

2.1.4 BODY FORCE

Include a body force in the momentum and energy equations. Possible values are:

• POTENTIAL: body force is derived from a scalar potential, ρa = −ρ∇Φ;

• VECTOR: body force is expressed as a three-component vector ρa = ρg.

• (VECTOR+POTENTIAL): body force is prescribed using both, ρa = ρ(−∇Φ+ g).

More details can be found in §2.4.3.

2.1.5 COOLING

Optically thin thermal losses can be included by appropriately setting this flag to one of the following:

• POWER LAW : radiative losses are proportional to ρ2Tα (§4.5.2);

• TABULATED: radiative losses are computed as n2Λ(T), where Λ(T) is a user-supplied tabulated
function of temperature, see §4.5.3. Alternatively, this module can be used to provide user-defined
cooling functions;

• SNEq : simplified non-equilibrium cooling function. See §4.5.4 for more details;

• MINEq : multi-ion non-equilibrium cooling model. It evolves the standard equations augmented
with a chemical network of 29 ions, see §4.5.5 and the work by [49].

2.1.6 INTERPOLATION

Sets the spatial order of integration. In the standard (finite volume) version of the code, the following
options are available:

• FLAT: first order reconstruction. The stencil is 1 point.

• LINEAR: piecewise TVD linear interpolation is applied to primitive variables. It is 2nd order accu-
rate in space. Stencil is 3 point wide.

CHAPTER 2. PROBLEM SETUP 19

• WENO3: provide 3rd order weighted essentially non oscillatory reconstruction [52] inside a cell
using is 3-point stencil.

• LimO3: provide 3rd order limiter function [7] based on a 3-point stencil.

• PARABOLIC: piecewise parabolic method (PPM) as implemented by [8] or [24]. The stencil re-
quires 5 zones.

The default is LINEAR. Both WENO3 and LimO3 employ a local three-point stencil to achieve piecewise-
quadratic reconstruction for smooth data and preserves their accuracy at local extrema thus avoiding
clipping of classical second-order TVD limiters and PPM. Non-uniform grid spacing is correctly handled
only by PARABOLIC and WENO3.

Note that although 3rd-order reconstructions are available, the finite volume version of the code
retains a global 2nd-order accuracy as fluxes are computed at the interface midpoint. On the contrary,
genuine 3rd and 5th order accurate schemes can be employed using the conservative finite difference
framework, §5.3.

2.1.7 TIME EVOLUTION

PLUTO has several time-marching algorithms which can be used in either a spatially split or unsplit
fashion. If ∆tn = tn+1 − tn is the time increment between two consecutive steps (Table 2.1) and L

denotes the discretized spatial operator on the right hand side of Eq. (1.1), the possible options are:

• EULER: first order (explicit) Euler algorithm is used to evolve from Un to Un+1:

Un+1 = Un +∆tnLn

• RK2, RK3: second or third order TVD Runge Kutta is used to advance the solution from time tn to
the next step time tn+1:

RK2 RK3

U∗ = Un +∆tnLn U∗ = Un +∆tnLn

− U∗∗ = 1
4

(

3Un +U∗ +∆tnL∗
)

Un+1 = 1
2

(

Un +U∗ +∆tnL∗
)

Un+1 = 1
3

(

Un + 2U∗∗ + 2∆tnL∗∗
)

(2.1)

When DIMENSIONALSPLITTING = YES, the operator L in Eq. (2.1) is one-dimensional. Setting
DIMENSIONALSPLITTING = NO makes the scheme dimensionally unsplit and the right hand side
include contributions from all directions simultaneously. Unsplit implementation of the Runge-
Kutta algorithms usually requires a somewhat more restrictive CFL condition, see Table 2.1.

• CHARACTERISTIC TRACING, HANCOCK: they evolve Un according to

Un+1 = Un +∆tnL(V n+ 1

2)

where V n+ 1

2 is computed by suitable Taylor expansion. Although the final step is in diver-
gence form, these methods require the primitive formulation of the equations, not yet available
for all modules. They are 2nd order accurate in space and time and less dissipative than the
previous multi-step algorithms. HANCOCK should be combined with a linear interpolant, while
CHARACTERISTIC TRACING which does a more sophisticated characteristic limiting, can be com-
bined with all reconstruction algorithms. The original PPM scheme of [8, 24] is available for the
HD, MHDand RHDmodules by selecting TIME EVOLUTION= CHARACTERISTIC TRACING, to-
gether with INTEPOLATION = PARABOLIC and a two-shock Riemann solver (Roe or hlld al-
ternatively).

Setting DIMENSIONALSPLITTING = NO yields the spatially unsplit fully corner-coupled method
of [10, 26]. This scheme is stable under the condition CFL . 1 (in 2D) and CFL . 1/2 (in 3D) and
it is slightly more expensive than RK2.

CHAPTER 2. PROBLEM SETUP 20

Time Step Determination. The time step ∆tn is computed using the information available from the
previous integration step and it can be controlled by the Courant-Friedrichs-Lewy (CFL) number Ca

within the limits suggested in Table 2.1, see [5]. Thus one immediately sees that, if ∆l is the cell physical
length, the time step roughly scales as ∼ ∆l for hyperbolic problems and as ∼ ∆l2 when parabolic terms
are included (§4.4.1). On the contrary, when parabolic terms are included via Super-Time-Stepping
integration (§4.4.2) the time step can be much larger being computed solely from the advection time
scale (i.e. τd = 0 is the table below).

SCHEME DIM. SPLIT CFLLimit

RK YES ∆tn max
d

[

max
ijk

(

λd
∆ld

+
2τd
∆l2d

)]

= Ca ≤ 1

MH/ChTr YES ∆tn max
d

[

max
ijk

(

λd
∆ld

+
2τd
∆l2d

)]

= Ca ≤ 1

RK NO ∆tn max
ijk

[

1

Ndim

∑

d

(

λd
∆ld

+
2τd
∆l2d

)

]

= Ca ≤ 1

Ndim

MH/ChTr NO ∆tn
[

max
ijk

(

λd
∆ld

)

+max
ijk

(

2τd
∆l2d

)]

= Ca ≤
{

1 in 2D

1/2 in 3D

Table 2.1: CFL conditions used by PLUTO for different explicit time stepping methods. For a given direction d, ∆ld represents
the cell physical length in that direction, λd provides the largest signal speed while τd accounts for diffusion processes. Here MH
and ChTr stand for HANCOCK and CHARACTERISTIC TRACING, respectively. These limits are based on a stability analysis on the
constant coefficient advection-diffusion equation by by Beckers (1992), [5].

Multi-step algorithms (RK2, RK3) work in all system of coordinates and are the default choice. Single-
step schemes (HANCOCK, CHARACTERISTIC TRACING) are more sophisticated, have less dissipation
and have been tested mainly on Cartesian and cylindrical grids. Have a look at Table 2.2 for a compari-
son between different (suggested) integration schemes commonly adopted in testing the code.

2.1.8 DIMENSIONAL SPLITTING

Set this feature to YES if you intend to use Strang operator splitting [45] to solve the equations in multi
dimensions. If DIMENSIONALSPLITTING is set to NO flux contributions are evaluated from all direc-
tions simultaneously. Dimensionally unsplit schemes avoid the errors due to operator splitting and are
generally preferred. Table 2.2 gives a brief description of commonly used setups.

2.1.9 NTRACER

The number of passive scalars or ”colors” (denoted with Qk) obeying simple advection equations of the
form:

∂Qk

∂t
+ v · ∇Qk = 0 ⇐⇒ ∂(ρQk)

∂t
+∇ ·

(

ρQkv
)

= 0

The array index used to access tracer variables (§2.4.1,§2.4.2) is [TR] for the first tracer, [TR+1] for the
second one and so on. The maximum number is 4.

2.1.10 USER DEF PARAMETERS

Sets the number of user-defined parameters that can be accessed from anywhere in the code. The max-
imum number is 32, while the minimum number is 1. The explicit numerical value is read at runtime
from pluto.ini and can be changed before execution without re-compiling the code.

The parameters are identified by means of a label corresponding to an integer index of the global
array g inputParam visible anywhere in the program. If, for instance, USERDEF PARAMETERShas
been set equal to 3, you will be prompted to define 3 different “labels”, say FOO1, FOO2 and FOO3, as

CHAPTER 2. PROBLEM SETUP 21

INTERP. TIME STEP. DIM. SPLIT Cost Comments

LINEAR RK2 YES,NO 2Ndim

Default setup. Compatible with almost every algorithms of the
code and work in all system of coordinates and physics mod-
ules. The dimensionally unsplit version is stable up to CFL .
1/Ndim, where Ndim is the number of dimensions.

PARABOLIC,
WENO3,LimO3

RK3 YES,NO 3Ndim

Similar to the previous setup, but it has better stability proper-
ties for higher than 2nd order interpolants. The dimensionally
unsplit version is stable up to CFL . 1/Ndim.

LINEAR HANCOCK YES Ndim

MUSCL-Hancock second-order scheme of [51, 50]. Computa-
tionally more efficient than RK integrators, it is probably the
faster 2nd order algorithm. Works well for the HD, RHD mod-
ules and the MHD module with the 8-wave formulation, partic-
ularly on Cartesian (1,2,3 dimensions) or cylindrical geometries.

LINEAR ChTr YES Ndim
More sophisticated than the previous one, it yields the Piecewise
Linear Method of [51, 9].

PARABOLIC ChTr YES Ndim

Gives the original Piecewise-Parabolic-Method (PPM) of [8].
Suggested for the HD and RHD on Cartesian (1,2,3 dimensions)
or cylindrical geometries. It is stable up to CFL . 1 and it has
small dissipation.

LINEAR
ChTr,
HANCOCK

NO 2Ndim

Yields the Corner-Transport Upwind method of [10, 42, 26] and
[14] for the MHD module. It is fully unsplit and stable up to
1 (in 2-D) and ∼ 0.5 in 3D. It is one of the most sophisticated
algorithms available. It is suitable for computations in Cartesian
and cylindrical grids in the HD, RHD and MHD module.

Table 2.2: Suggested algorithm configurations. The cost (4th column) is given in terms of number of Riemann problems per cell
per step. Ndim is the number of spatial dimensions. ChTr stands for CHARACTERISTIC TRACING.

in Fig. 2.2. These names are the integer indexes of the g inputParam array: g inputParam[FOO 1]
will contain the actual value of the first user-defined parameter, g inputParam[FOO 2] the second one
and so forth.

Parameter names should be chosen with care in order to avoid overlapping wth other program vari-
ables. Although there are no strict rules, we advise to use capital letters, avoid short labels such as “V0”
or “VX” and choose a more representative name that explains the use of the variable on its own, e.g.,
PARINFLOWVEL.

Parameter names (and values) are automatically inserted inside pluto.ini in the correct order during
the setup script. However, if you use a different initialization file, you may have to set the parameter
names together with their values manually.

2.1.11 Additional Switches

Besides the options discussed so far, accessible via the Python script, definitions.h contains additional
switches. You can skip this section if you are new to PLUTO . These additional switches are not acces-
sible via the Python script, but may be changed just by editing your definitions.h:

• INITIAL SMOOTHING (YES/NO) :
when set to YES, initial conditions are assigned by sub-sampling and averaging different values
inside each cell. It is useful to create smooth profiles of sharp boundaries not aligned with the grid
(e.g., a circle in Cartesian coordinates).

• WARNINGMESSAGES (YES/NO) :
issue a warning message every time a numerical problem or inconsistency is encountered; setting
WARNINGMESSAGESto YES will tell PLUTO to print what, when and where a numerical problem
occurred.

• PRINT TO FILE (YES/NO) :
when set to YES it tells PLUTO to re-direct the output log to the file pluto.log. If this file does not

CHAPTER 2. PROBLEM SETUP 22

Figure 2.2: User defined
names are chosen in this sub-
menu.

exist it will be created; if the file exists but integration starts from initial conditions, it will be over
written. Finally, if you restart from a previously saved file, the output will be appended.

• INTERNAL BOUNDARY (YES/NO) :
when turned to YES, it allows to overwrite or change the solution array anywhere inside the com-
putational domain. This is done inside the UserDefBoundary() function when side==0 , see
§2.4.2. This option is particularly useful when flow variables must be kept constant in time or to
assign lower/upper threshold values to any physical quantity (e.g. density or pressure).

• SHOCKFLATTENING (NO/ONED/MULTID) :
Provides additional dissipation in proximity of strong shocks. When set to ONED, spatial slopes
are progressively reduced following a one-dimensional shock recognition pattern, as in [8]. This
is done separately dimension by dimension.

When set to MULTID, a multi dimensional strategy is used by which, upon shock detection, i)
interpolation (in every direction) reverts to the MINMOD limiter and ii) fluxes are computed using
the HLL Riemann solver. The flagging strategy is set in States/findshock.c. The MULTID shock
flattening has proven to be an effective adaptation strategy that can noticeably increase the code
robustness. It is highly suggested for complex flow structures involving strong shocks.

• ARTIFICIAL VISCOSITY (YES/NO) :
when set to YES, it includes additional dissipation using Lapidus-type viscosity. This should be
used only with the two-shock Riemann solver.

• CHARLIMITING (YES/NO) :
set to YES to perform reconstruction on characteristic variables rather than primitive. It is available
for the HD, RHDand MHDmodules. Although somewhat more expensive, characteristic variable
interpolation is known to produce better quality solutions by suppressing unwanted numerical
oscillation in proximity of strong discontinuities and leading to a better entropy enforcement. We
recommend setting this switch to YES whenever possible.

• LIMITER (string) :
Set the limiter(s) to be applied. string can be one of

– DEFAULT: keep the default setting (defined in Src/States/set limiter.c).

– MINMOD LIM : use the minmod limiter (most diffusive).

– VANALBADA LIM : use the van Albada limiter function.

– UMIST LIM : use the umist limiter.

– VANLEER LIM : use the harmonic mean limiter of van Leer.

– MC LIM : use the monotonized central difference limiter (least diffusive).

CHAPTER 2. PROBLEM SETUP 23

– FOURTH ORDER LIM : use the fourth-order approximate limiter of [9, 42].

where MINMOD LIM is the most diffusive and FOURTH ORDER LIM is the least diffusive limiter.
This switch has effect only for LINEAR interpolation. All limiters employ a 3-point stencil except
for FOURTH ORDER LIM which uses 5 zones.

• CT EMFAVERAGE (string, only for CONSTRAINED TRANSPORT MHD/RMHD):
controls how the electromotive force (EMF) is integrated from the face center to the edges. This is
discussed in more detailed in §3.2.4.3.

• CT EN CORRECTION (YES/NO, only for CONSTRAINED TRANSPORT MHD/RMHD):
this option is available only in the MHD and RMHD modules. The default is NO, implying that
energy is not corrected after the conservative update. However, for low-beta plasma one may find
useful to switch this option to YES, as described in [3].

• ASSIGN VECTORPOTENTIAL (YES/NO):
when set to YES, magnetic field components are initialized from the vector potential. In the con-
strained transport algorithm (CT, §3.2.4.3), this guarantees that the magnetic field has zero diver-
gence. When set to NO, assignment proceeds in the usual way, see §3.2.3 for more details.

• UPDATEVECTORPOTENTIAL (YES/NO):
enable this option if you wish to evolve the vector potential in time and save it to disk.

• STS nu (double):
sets the value of the ν parameter used to control the efficiency of Super-Time-Stepping integration
for parabolic (diffusion) terms, see chapter 4 and §4.4.2.

CHAPTER 2. PROBLEM SETUP 24

2.2 STEP # 2: makefile creation

The makefile contains instructions to compile and link C source code files and produce the executable
pluto. The Python script creates a new makefile every time you choose Change makefile from the
menu; otherwise, it automatically updates the existing one after you have finished the problem setup.

If you choose to create a new makefile, Python will ask you to select an appropriate .defs file con-
taining architecture-dependent flags from the Config/ directory. The template Config/Template.defs can
be used to create a new configuration from scratch.

The simplest example is a definition file for a single-processor without any additional library. In this
case it suffices to set:

CC = cc
CFLAGS = -c -O
LDFLAGS = -lm

PARALLEL = FALSE # TRUE/FALSE: enable/disable parallel mod e
USE_HDF5 = FALSE # TRUE/FALSE: enable/disable support for H DF5 library
USE_PNG = FALSE # TRUE/FLASE: enable/disable support ofr PN G library

where CCis the name of your C compiler (cc, gcc, mpicc , etc...), CFLAGSare command line options
(such as optimization, search path, etc...) and LDFLAGScontains options to be passed to the linker.

The variables PARALLEL, USE HDF5and USEPNGcan be set to either TRUE or FALSE to enable or
disable, respectively, parallel mode, support for HDF5 library and support for PNG library in the static
grid version of PLUTO . When set to TRUE the same variable name is passed to PLUTO as a #define
directive with value 1.

As an example, if USEHDF5is set to TRUE inside a .defs file then any C source file containing instruc-
tions inside a preprocessor directive #ifdef USE HDF5 ... #endif statement will be compiled.

Note: These switches are effective only in the static grid version of the code and have no effect
when creating a PLUTO-Chombo makefile, §7.2.

2.2.1 MPI Library (Parallel) Support

Parallel executables for the static grid version of PLUTO are created by specifying the name of a MPI C
compiler (e.g. mpicc) and by setting the makefile variable PARALLELto TRUE in your .defs file:

CC = mpicc # or similar
...

PARALLEL = TRUE
...

###############################
MPI additional spefications
###############################

ifeq ($(strip $(PARALLEL)), TRUE)
USE_ASYNC_IO = # if TRUE, enable Asynchronous binary I/O

endif

In this case, you may also modify existing variables or add new ones inside the conditional statement
beginning with ifeq .

When parallel mode is enabled, C source code sections that are specific to MPI should be enclosed
inside #ifdef PARALLEL ... #endif statements.

CHAPTER 2. PROBLEM SETUP 25

2.2.1.1 Asynchrounous I/O

By enabling the USEASYNCIO to TRUE, PLUTO allows to replace the standard blocking calls of MPI
with non-blocking and split collective calls available in the MPI-2 I/O standard1. Given suitable hard-
ware, this allows the transfer of data out/in the user’s buffer to proceed concurrently with computation.
A separate request complete call is needed to complete the I/O request, i.e., to confirm that the data
has been read or written and that it is safe for the user to reuse the buffer. Overall, this results in an
improved performance for intensive I/O computations. More details may be found in http://www.prace-
project.eu/IMG/pdf/petascale astrophysical simulations with pluto.pdf.

Note: This is an experimental feature that can be used, in the current version of the code, only for .flt
or .dbl binary files for saving cell-centered data.

2.2.2 HDF5 Library Support

If your system is already configured with serial or parallel HDF5 libraries, you may enable support for
HDF5 I/O in the static grid version of PLUTO by turning the makefile variable USEHDF5to TRUE. If
you do not have HDF5 installed, you may follow the installation guidelines given in §7.1.1. Note that
the same HDF5 library can be used for both the static and AMR versions of PLUTO although support
for HDF5 in the AMR version is enabled differently, see §7.1.2.

Once USEHDF5 has been set to TRUE, add the HDF5 library path to the list of directories to be
searched for header files as well as the corresponding linker option for HDF5 library files. Note that
different pathnames should be given if you are building PLUTO in serial or parallel mode. These infor-
mation are supplied using the INCLUDE DIRS and LDFLAGSvariables, respectively:

...
USE_HDF5 = TRUE
...

###############################
HDF5 library options
###############################

ifeq ($(strip $(USE_HDF5)), TRUE)
HDF5_LIB = /usr/local/lib/HDF5-1.xx
INCLUDE_DIRS += -I$(HDF5_LIB)/include
LDFLAGS += -L$(HDF5_LIB)/lib -lhdf5 -lz

endif

Note: PLUTO is compatible with HDF5 1.6.x API, although it may be be linked with HDF5 1.8.x
without any problem, since the H5 USEAPI macro (defined in hdf5 io.c) forces the library to use
HDF5 1.6 macro definitions.
Alternatively, you may also configure and install HDF5 1.8.x from scratch by providing the
--with-default-api-version=v16 backward compatibility flag to the configure script. See
also §7.1.1.

2.2.3 PNG Library Support

Whenever the portable network graphics (PNG) library is installed on your system, you may enable
support for 2D output using PNG color images. To do so, simply set to TRUE the corresponding USEPNG
variable inside your .defs file and add the linker option to the LDFLAGSvariable:

1 Contrary to a blocking call which will not return until the I/O request is completed, a non-blocking call initiates an I/O
operation but does not wait for it completion

CHAPTER 2. PROBLEM SETUP 26

...
USE_PNG = TRUE
...

###############################
PNG library options
###############################

ifeq ($(USE_PNG), TRUE)
LDFLAGS += -lpng

endif

2.2.4 Including Additional Files: local make

Additional (e.g. user defined) files may be added to the standard object list created by Python in your
makefile. To this end, create a new file named local make like:

OBJ += myfile.o
HEADERS += myheader.h

This will instruct make that PLUTO has to be compiled and linked together with the (user-supplied) file
myfile.c which depends on myheader.h. This is particularly useful when the user wants to compile and
link the code together with supplementary routines contained in external files.

CHAPTER 2. PROBLEM SETUP 27

2.3 STEP # 3: The initialization file pluto.ini

At start-up, the code checks for the pluto.ini input file (or a different one if the -i command flag is given)
that contains all the run-time information necessary for integration. A template for this file can be found
in the Src/Templates directory. The initialization file is divided into eight different “blocks” enclosed by a
pair of square brackets

[

· · ·
]

. Each block contains a set of labels and associated (mandatory or optional)
fields:

[Grid]

X1-grid 1 0.0 100 u 1.0
X2-grid 1 0.0 100 u 1.0
X3-grid 1 0.0 1 u 1.0

[Chombo Refinement]

Levels 4
Ref_ratio 2 2 2 2 2
Regrid_interval 2 2 2 2
Refine_thresh 0.3
Tag_buffer_size 3
Block_factor 4
Max_grid_size 32
Fill_ratio 0.75

[Time]

CFL 0.4
CFL_max_var 1.1
CFL_par 0.3 # optional
rmax_par 40.0 # optional
tstop 1.0
first_dt 1.e-4

[Solver]

Solver tvdlf

[Boundary]

X1-beg outflow
X1-end outflow
X2-beg outflow
X2-end outflow
X3-beg outflow
X3-end outflow

[Static Grid Output]

uservar 0
dbl 1.0 -1 single_file
flt -1.0 -1 single_file
vtk -1.0 -1 single_file # optional
dbl.h5 1.0 2.40h # optional
flt.h5 1.0 -1 # optional
tab -1.0 -1 # optional
ppm -1.0 -1 # optional
png -1.0 -1 # optional
log 1
analysis -1.0 -1 # optional

[Chombo HDF5 output]

Checkpoint_interval -1.0 0
Plot_interval 1.0 0

[Parameters]

SCRH 0

Tag labels on the left side should not be changed. They identify appropriate field(s) following on
the same line. Block ordering is irrelevant. The quantities (and related data-types) read from the file are
now described.

CHAPTER 2. PROBLEM SETUP 28

2.3.1 The [Grid] block

Defines the physical domain and generates the grid.

• X1-grid : (integer) (double) (integer) (char) (...) (double);

• X2-grid : (integer) (double) (integer) (char) (...) (double);

• X3-grid : (integer) (double) (integer) (char) (...) (double);

For each dimension: the first (integer) defines the number of non-overlapping, adjacent one-
dimensional grid patches making up the computational domain (Note: this has nothing to do with
parallel decomposition which is separately carried out by MPI).

If, say, a uniform grid covers the whole physical domain this number should be set to 1. If two consec-
utive adjacent grids are used, then 2 is the correct choice and so on. For each patch, the triplet (double)
(integer) (char) specifies, respectively, the leftmost node coordinate value, number of points and grid
type for that patch; there must be as many triplets (...) as the number of patches. Since patches do
not overlap, the rightmost node value of one grid defines the leftmost node value of the next adjacent
one. The last (double) specify the rightmost node coordinate value of the last segment, which is also
the rightmost node value in that direction. If a dimension is ignored, then 1 grid-point only should be
assigned to that grid.

The global domain therefore extends, in each direction, from the first (double) node coordinate to
the last (double) node coordinate. These values can be accessed from anywhere in the code using
the global variables g domBeg[d] and g domEnd[d] , where d=IDIR,JDIR,KDIR is used to select the
direction.

The grid-type (char) entry can take the following values:

• u or uniform: a uniform grid patch is constructed; if xL and xR are the leftmost and rightmost
point of the patch, the grid spacing becomes:

∆x =
xR − xL

N

• s or stretched: a stretched grid is generated. Stretched grids can be used only if at least one
uniform grid is present. The stretching ratio r is computed as follows:

∆x
(

r + r2 + · · ·+ rN
)

= xR − xL =⇒ r
1− rN

1− r
=
xR − xL

∆x

where ∆x is taken from the closest uniform grid, N is the number of points in the stretched grid
and xL and xR are the leftmost and rightmost points of the patch.

• l±: a logarithmic grid is generated. When l+ is invoked, the mesh size is increasing with the

coordinate:

∆xi =
(

xi− 1

2

+ |xL| − xL

)

(10∆y − 1) , ∆y =
1

N
log

(

xR + |xL| − xL
|xL|

)

when l- is invoked, the mesh size decreases with the coordinate:

∆xi =
(

xi− 1

2

− |xL| − xR

)

(10∆y − 1) , ∆y = − 1

N
log

(

xR + |xL| − xL
|xL|

)

In practice, the mesh spacing in the l+ grid is obtained by reversing the spacing in the l- grid.

Note: The interval should not include the origin when using a logarithmic grid.

Beware that non-uniform grids may introduce extra dissipation in the algorithm. Changes in the grid
spacing are correctly accounted for when INTERPOLATIONis set to either PARABOLIC or WENO3.

CHAPTER 2. PROBLEM SETUP 29

6 zones (s)

x=0 x=3

12 zones (u)

18 zones

x=10 Figure 2.3: Example of one
dimensional grid with a uni-
form (left) and stretched seg-
ment (right in red) covering the
interval [0, 10].

Example # 1: A simple uniform grid extending from xL = 0.0 to xR = 10.0 with 128 zones can be
specified using:

X1-grid 1 0.0 128 u 10.0

Example # 2: consider a one-dimensional physical domain extending from 0.0 to 10.0 with a total
of 18 zones, but a finer grid is required for 0 ≤ x ≤ 3. Then one might specify

X1-grid 2 0.0 12 u 3.0 6 s 10.0

which generates a uniform grid with 12 zones for 0 ≤ x ≤ 3, and a stretched grid with 6 zones for
3 ≤ x ≤ 10, see Fig.2.3

When the computational grid is generated, each processor owns a domain portion defined by the
global integer variables IBEG ≤ i ≤ IEND, JBEG≤ j ≤ JENDand KBEG≤ k ≤ KEND. Ghost cells are
added outside the local computational domain to complete the stencil at the boundaries, see Fig. 2.4.
The global variables NX1, NX2 and NX3 define the total number of points (boundaries excluded) such
that IEND - IBEG + 1 = NX1 , JEND - JBEG + 1 = NX2, KEND - KBEG + 1 = NX3. The total
number of zones (for a given processor, boundaries included) is given by the global variables NX1 TOT,
NX2 TOTand NX3 TOT, see Fig. 2.4.

When using Adaptive Mesh Refinement with the Chombo library (see Chapter 7), only one uniform
grid patch can be generated in each dimension, defining the base level grid. Also, the cells must in this
case have the same physical length in each direction (e.g., squares in 2D, cubes in 3D). The refinement
options are set in the Chombo Refinement section.

i

NX1_TOT

NX1

N
X

2

N
X

2_
T

O
T

JEND
IEND,

JBEG
IBEG,

j
Figure 2.4: Computational grid in 2 dimensions with
NX1 = NX2 = 4 and 1 ghost zone. Internal zones (solid
boxed) are spanned by IBEG ≤ i ≤ IEND, JBEG ≤ j ≤
JEND. Dashed boxes represent boundary ghost zones.

CHAPTER 2. PROBLEM SETUP 30

2.3.2 The [Chombo Refinement] Block

Controls the grid refinement if PLUTO has been compiled with the Chombo library, see §7.2.3. It is
ignored otherwise.

2.3.3 The [Time] Block

This section specifies some adjustable time-marching parameters:

• CFL (double)
Courant number: it controls the time step length and, in general, it must be less than 1. The
actual limit can be inferred from Table 2.1. In the case of unsplit Runge-Kutta time stepping, for
instance, CFL. 1/Ndim where Ndim is the number of spatial dimensions while for dimensionally
split methods one has CFL . 1. Certain combinations of algorithms may have more stringent
limitations: a second-order Runge-Kutta algorithm with parabolic reconstruction, for example,
requires CFL. 0.4 for stability reasons.

• CFL max var (double)
Maximum value allowed for ∆tn/∆tn−1 (maximum time step growth between two consecutive
steps).

• CFL par (double) [optional]
When parabolic terms are integrated using operator splitting (with Super-Time-Stepping, §4.4.2),
it controls the diffusion Courant number. The default value is 0.8/Ndim. This parameter has no
effect when parabolic terms are included via standard explicit integration.

• rmax par (double) [optional]
When parabolic terms are integrated using operator splitting, it sets the maximum ratio between
the actual time step and the explicit parabolic time step (i.e. ∆tn/∆tnpar). The default value is 100.
This parameter has no effect when parabolic terms are included via standard explicit integration.

• tstop (double)
integration ends when t = tstop, unless a maximum number of steps (§1.4) is given. tstop has to
be > 0.0.

• first dt (double)
The initial time step. A typical value is 10−6.

2.3.4 The [Solver] Block

• Solver (string)
sets the Riemann solver for flux computation. From the most accurate (i.e. least diffusive) to the
least accurate (i.e. most diffusive):

– two shock: The Riemann problem is solved exactly or approximately (depending on the
particular solver implemented for a given physics module) at every interface; this is usually
more accurate, but computationally intensive. See [8] for the HD module, and [25] for the
relativistic hydro equations;

two shock roe ausm+ hlld hllc hll tvdlf

HD
√ √ √

-
√ √ √

MHD -
√

-
√ √ √ √

RHD
√

- - -
√ √ √

RMHD - - -
√ √ √ √

Table 2.3: Available Riemann solvers for the different physics module.

CHAPTER 2. PROBLEM SETUP 31

– roe: Linearized Roe Riemann solver based on characteristic decomposition of the Roe matrix,
[41].

– ausm+: Advection Upstream Splitting Method of [19] (only for the HD module);

– hlld: The hlld approximate Riemann solver of [36] (for the adiabatic case), [27] (for the
isothermal case) and [32] for the relativistic MHD equations;

– hllc: Harten, Lax, Van Leer approximate Riemann Solver with the contact discontinuity;

– hll: Harten, Lax, Van Leer approximate Riemann Solver;

– tvdlf: A simple Lax-Friedrichs scheme is used.

Note that not all the solvers are available for a given physics module, take a look at Table 2.3.
We warn the user that, under some circumstances (high Mach number flows, low density plas-
mas), more diffusive solvers such as HLL or TVDLF turn out to be more robust than accurate
solvers. However, hybrid/adaptive strategies can be turned on when SHOCKFLATTENINGis set
to MULTID, §2.1.11.

2.3.5 The [Boundary] Block

Specifies the type of boundary condition to be applied in the physical ghost zones of the computational
domain:

• X1-beg (string)

• X1-end (string)

• X2-beg (string)

• X2-end (string)

• X3-beg (string)

• X3-end (string)

Assuming that q is a scalar quantity and n is the coordinate direction orthogonal to the boundary
plane, string can be one of:

- outflow

set zero gradient across the boundary:
∂q

∂n
= 0 ,

∂v

∂n
= 0 ,

∂B

∂n
= 0

- reflective
reflective (rigid walls) boundary conditions. Variables are symmetrized across the boundary and
normal components of vector fields flip signs,

q → q ,

{

vn → −vn
Bn → −Bn

,

{

vt → vt

Bt → Bt

where n (t) is normal (tangential) to the interface.

- axisymmetric
same as reflective, except for the angular component of vφ or Bφ which also changes sign:

q → q ,

{

vn → −vn
Bn → −Bn

,

{

vφ → −vφ
Bφ → −Bφ

,

{

vaxis → vaxis

Baxis → Baxis

where axis is (r = 0, z) or (r, θ = 0) in cylindrical or spherical coordinates.

CHAPTER 2. PROBLEM SETUP 32

- eqtsymmetric
sets equatorial symmetry with respect to a given plane. It is similar to reflective, but with
reversed sign for the magnetic field:

q → q ,

{

vn → −vn
Bn → Bn

,

{

vt → vt

Bt → −Bt

- periodic: periodic.

- shearingbox: Shearingbox boundary conditions are similar to periodic, except that they are
sheared in one direction (only X1-beg and X1-end support this type at this moment). This par-
ticular boundary condition can be used only if the ShearingBox module (described in §5.1) is en-
abled.

- userdef: user-supplied boundary conditions (it requires coding your own boundary conditions
in the function UserDefBoundary() in init.c, §2.4.2).

Like the [Grid] block, you should include the x3 boundaries for 2D runs, even if they will not be consid-
ered.

2.3.6 The [Static Grid Output] Block

This block controls the output in the static grid version of the code. AMR output is controlled by another,
similar block (see Chap. 7). Output files are written at specific times in the directory where pluto is
executed by using one or more of the available file formats in PLUTO (Chapter 6). The different fields
are:

• uservar (integer) (...)
defines supplementary variables to be written to disk in any of the format described below. The
first integer represents the number of supplementary variables. When greater than zero, it must
be followed by as many variable names separated by spaces, see Chapter 6.

• dbl (double) (integer/string) (string)
Assigns the output intervals for double precision (8 bytes) binary data. A negative value sup-
presses output.

– The first field (double) specifies the time interval (in code units) between consecutive out-
puts.

– The second field can be an integer giving the number of steps between consecutive outputs
or a string giving the wall-clock time between consecutive outputs. A value, for instance,
of 2.40h tells PLUTO to write one .dbl file every two hours and 40 minutes. Negative values
will be ignored for this control parameter.

– The last field (string) can be either single file (one single output file per time step con-
taining all of the variables) or multiple files (different variables are written to different
files).
When asynchronous I/O is enabled (§2.2.1.1), a third option single file async is permit-
ted for .flt or .dbl binary files to specify that asynchrounous binary output has to be per-
formed.

Double-precision format files can be used to restart the code using the -restart n command
line argument.

• flt (double) (integer/string) (string)
like dbl , but for single-precision (4 bytes) data files.

• vtk (double) (integer/string) (string)
like dbl , but for VTK legacy file format, see §6.1.3;

CHAPTER 2. PROBLEM SETUP 33

• dbl.h5 (double) (integer/string)
like dbl , but for hdf5 double-precision format §6.1.2. This format can also be used for restarting
the code by supplying the -h5restart n command line argument.

• flt.h5 (double) (integer/string)
like dbl but for hdf5 single-precision format §6.1.2;

• tab (double) (integer/string)
sets the time and the number of steps interval for tabulated ascii format, §6.1.4;

• ppm (double) (integer/string)
sets time and the number of step intervals for 2D color images in PPM format, §6.1.5;

• png (double) (integer/string)
sets time and the number of step intervals for 2D color images in PNG format §6.1.5;

• log (integer)
sets the interval (in number of steps) of the integration log to screen.

• analysis (double) (integer)
sets time and number of steps interval between consecutive calls to the function Analysis() .

2.3.7 The [Chombo HDF5 output] Block

Relevant only for AMR-Pluto with the Chombo library, see §7.2.3.

2.3.8 The [Parameters] Block

• PARNAME1 (double)

• ...

• PARNAMEn (double)

User-defined parameter values are read at runtime in this section. The labels on the left identify the
parameter labels (i.e. the corresponding indices of the array g inputParam) while the (double) values
on the right are the actual user-defined parameter values. The number of parameters specified in this
section must exactly match the number and the order given in definitions.h

CHAPTER 2. PROBLEM SETUP 34

2.4 STEP # 4: Problem Configuration: init.c

The source file init.c provides a set of user-supplied functions that are used to define, set and configure
your specific problem. These include:

• Init() : sets initial conditions as functions of the spatial coordinates x1, x2, x3;

• UserDefBoundary() : sets user-defined boundary conditions at the physical boundary sides of
your computational domain if necessary (additional routines may be required, §3.2.4.3);

• Analysis() : run-time data analysis and reduction;

• BodyForceVector() , BodyForcePotential() : defines the vector components of the acceler-
ation vector and/or the gravitational potential.

• BackgroundField() : sets a background, force-free magnetic field.

A template for all of them can be found in Src/Templates/init.c. In what follows we describe their proto-
types.

2.4.1 The Init() function

Purpose:

Assign initial conditions.

Syntax:

void Init (double * v, double x1, double x2, double x2)

Arguments:

• v : a pointer to a vector of primitive quantities. A particular variable is located by means of an
index: ρ =v[RHO] , vx =v[VX1] , vy =v[VX2] ... and so on. Although VX1, VX2 and VX3 can be
used in any coordinate system, in order to avoid confusion, an alternative set may be adopted if
the geometry is not Cartesian, see columns 2-4 in Table 2.4.

Note: PLUTO 3 Users: The old array indexing style using DN, VX, VYand VZ, etc... used in previous
versions of the code can still be used for backward compatibility.

• x1,x2,x3 : coordinates x1, x2, x3 of the computational cell where v is initialized;

Example:

the following code sets a disk with radius 1 centered around the origin in a Cartesian domain.
The disk has higher density and pressure (ρ = 10, p = 30) with respect to the background state
(ρ = 1, p = 1):

void Init (double * v, double x1, double x2, double x3)
{

double r;

r = sqrt(x1 * x1 + x2 * x2);
v[VX1] = v[VX2] = 0.0;
if (r < 1.0){

v[RHO] = 10.0;
v[PRS] = 30.0;

}else{
v[RHO] = 1.0;
v[PRS] = 1.0;

}
}

CHAPTER 2. PROBLEM SETUP 35

Index Cylindrical Polar Spherical Quantity Module

RHO - - - (proper) density ALL

VX1 iVR iVR iVR x1-velocity ALL

VX2 iVZ iVPHI iVTH x2-velocity ALL

VX3 iVPHI iVZ iVPHI x3-velocity ALL

PRS - - - (thermal) pressure, ALL

BX1 iBR iBR iBR x1 cell-centered magnetic field MHD, RMHD

BX2 iBZ iBPHI iBTH x2 cell-centered magnetic field MHD, RMHD

BX3 iBPHI iBZ iBPHI x3 cell-centered magnetic field MHD, RMHD

BX1s iBRs iBRs iBRs x1 staggered magnetic field MHD, RMHD

BX2s iBZs iBPHIs iBTHs x2 staggered magnetic field MHD, RMHD

BX3s iBPHIs iBZs iBPHIs x3 staggered magnetic field MHD, RMHD

TRC - - - tracer (passive scalar, Q) ALL

Table 2.4: Array indices used for labeling primitive variables. Staggered components (“s” suffix) are used only for magnetic
fields in the boundary conditions, see §3.2.4.3.

2.4.1.1 Assigning Initial Conditions from Input Files

With PLUTO 4.0 it is possible to assign initial conditions from user-supplied binary data by providing i)
a grid data file and ii) a single raw binary file containing the variables to be read. The size, dimensions
and even the geometry of the input grid may be different from the actual grid employed by PLUTO, as
long as the coordinate transformation is supported. This provides a flexible and efficient tool to assign
initial conditions by mapping data values originally defined on different computational domains. For
instance, you can map a 2D spherical grid onto a 2D axisymmetric cylindrical domain, generate a 3D
Cartesian domain by rotating any 2D axisymmetric data and so forth.

The module is initialized by calling the function InputDataSet() which reads and stores input
grid information such as size, number of variables, geometry and dimensions. This function should be
called only once from your Init() function:

InputDataSet (grid_file, input_var);

where the first argument grid file is a string giving the name of the input grid file while input var
is an array of integers specifying which variables are contained in the input data file. The input grid file
should be written using the same format employed by PLUTO 4.0, see §6.1.6.

After initialization, any subsequent call to

InputDataRead (data_file);

will read and store into memory the values of the variables contained in the input data file data file .
Unless the input data file is changed, this function should also be called only once. The data file should
be written using binary format using either single or double precision with extensions ”.flt” (for the
former) or ”.dbl” (for the latter). Variables should be stored sequentially and their order is specified by
the elements of the array input var until the value -1 is encountered. You may provide only some
of the variables used by PLUTO and not necessarily all of them. The number of elements per variable
should exactly match the number of grid points defined by the input grid.

Finally, the function InputDataInterpolate() is used to map the values of the variables con-
tained in the input binary data on the grid employed by PLUTO using bi- or tri-linear interpolation at
the desired coordinate location:

InputDataInterpolate (v, x1, x2, x3);

where v is the same array of primitive variables used in the Init() function and x1,x2,x3 are the
coordinates at which interpolates are required.

CHAPTER 2. PROBLEM SETUP 36

In the example below, density and velocity are assigned from the input binary file tmp/data.0010.dbl
defined on the computational domain specified in tmp/grid.out:

void Init (double * v, double x1, double x2, double x3)
{

static int first_call = 1;

if (first_call){
int k, input_var[256];
for (k = 0; k < 256; k++) input_var[k] = -1;

input_var[0] = RHO;
input_var[1] = VX1;
input_var[2] = VX2;
input_var[3] = VX3;

input_var[4] = -1;

InputDataSet ("./tmp/grid.out", input_var);
InputDataRead ("./tmp/data.0010.dbl");
first_call = 0;

}

InputDataInterpolate(v, x1, x2, x3);
.
.
.

}

Beware that interpolation is performed only on the variables specified by the array input var[] . The
remaining variables (if any) must still be set inside Init() .

Note: When the input geometry differs from the one used by PLUTO , vector components are not
automatically transformed to the current geometry.

A configuration example may be found in the Test Problems/HD/Blast/ directory, where the initial
condition sets an isothermal blast wave propagating in a non-uniform density medium. The inital den-
sity distribution is created by the separate file Turbulence.c in the same directory and interpolated at
runtime by PLUTO using the method outlined above.

Note: Staggered magnetic fields may not be assigned in this way since the divergence free condi-
tion is not necessarily maintained. Using the vector potential components is more advisable.

CHAPTER 2. PROBLEM SETUP 37

2.4.2 The UserDefBoundary() function

Purpose:

Assigns user-defined boundary conditions to one or more physical boundaries of the computational
domain, see Fig 2.5. Required only if one or more physical boundaries have been tagged “userdef”
inside your pluto.ini.

Alternatively, this function may also be used to control the solution array at the beginning of every
time step inside the computational domain (set floor values, override the solution, etc...).

Syntax:

void UserDefBoundary (const Data * d, RBox * box, int side, Grid * grid)

Arguments:

• * d: a pointer to the PLUTO data structure, containing:

– d->Vc[nv][k][j][i] : a four-index array of primitive variables defined at the cell center.
The integer nv =RHO, VX1, ..., NVAR-1 labels the variable (see Table 2.4), while k , j and i are
the zone indices of the x3, x2 and x1 direction (note the reversed order), respectively.

– d->Vs[nv][k][j][i] (staggered MHD only): a four-index array containing the three com-
ponents of the staggered magnetic field (BX1s, BX2s, BX3s, if any) defined at zone faces, see
Fig 2.5. These components only exists in the MHD or RMHD modules when using the Con-
strained Transport algorithm to control the ∇ ·B = 0 condition, see §3.2.4.3 for more details.

Important: Face-centered (staggered) magnetic fields and cell-centered fluid variables are defined
on different zone stencils, see Figure 2.5. The zone-centering and the corresponding index range
is encoded in the box structure (see below).

We recommend to assign all the variables in use at a user-defined boundary, with the exception of
PSI GLM(which is optional) and the staggered component of magnetic field normal to the interface
if you are using the Constrained Transport (CT) method, see §3.2.4.3.

• * box : a pointer to a RBox structure, defining the rectangular portion of the domain over which
ghost zone values should be assigned. Since cell-centered and face-centered data are defined on
different box structures, its usage is maily intended to

– discriminate between cell-centered variables and face-centered variables using the structure
member box->vpos which specifies the location of the variable inside the cell (=CENTER,
X1FACE, X2FACE, X3FACE);

– provide an efficient way of looping through the ghost boundary zones using the macro
BOXLOOP(box,k,j,i) which automatically takes care of the index range of definition.

Note: Using the box structure is not strictly mandatory and the usual macros X1 BEGLOOP() ,
..., X3 ENDLOOP() may still be employed without any modifications. However, these macros
perform loops over cell-centered data stencils and staggered field are not completely defined since
the loops do not include one row of zones at the furthest left edges of the boundary zones. On the
contrary, the BOXLOOP() macro takes into account the full range of definition of the variable and
is preferred whenever possible.

• side : an input integer label specifying on which side of the physical domain user-defined values
should be prescribed. It can take on the following values:

– X1 BEG, X1 END: boundary conditions can be assigned in the ghost zones at the beginning
and end of the physical domain in the x1 direction

CHAPTER 2. PROBLEM SETUP 38

– X2 BEG, X2 END: boundary conditions can be assigned in the ghost zones at the beginning
and end of the physical domain in the x2 direction

– X3 BEG, X3 END boundary conditions can be assigned in the ghost zones at the beginning
and end of the physical domain in the x3 direction

– 0 (zero): change/control the solution inside the computational domain. This feature can
be used only if the macro INTERNAL BOUNDARYhas been enabled in your definitions.h, see
§2.4.2.1.

If, say, X1-beg has been tagged userdef inside your pluto.ini, the user has to specify the boundary
values at the beginning of the x1 direction when side==X1 BEG.

• * grid : a pointer to an array of Grid structures containing all the relevant grid information. In
this case, grid[IDIR] is the structure relevant to the x1direction, grid[JDIR] to the x2 direction
and grid[KDIR] pertains to the x3 direction. See the code documentation for more details on the
members of the Grid structure.

Cell Centered Variables

Boundary values

Interior values

Y−Face boundary values

Face Staggered Variables

X−Face boundary values
X−Face interior values Y−Face interior values

Figure 2.5: Schematic representation of cell-centered (left panel) and face-centered (right panel) collocation of physical variables
on a 2D grid. X and Y-face centered staggered quantities are shown by squares and triangles, respectively. Filled symbols (circles,
boxes and triangles) are considered interior values part of the solution, whereas boundary values are identified by empty symbols
and must be prescribed by the user if the boundary is userdef.

Example #1:

As a first example we show how to prescribe a fixed inflow boundary condition for a jet model. The
computational domain is a 2D box in cylindrical geometry, so that x1 ≡ R, x2 ≡ z. A constant inflow
is prescribed a the jet nozzle located at the lower z boundary for R ≤ 1 while reflective boundary
conditions are assigned for R > 1. The inflow values are specified as

ρ

vR

vz

p

=

1

0

M

1/Γ

for R ≤ 1 ,

ρ(R,−z)
vR(R,−z)
vz(R,−z)
p(R,−z)

=

ρ(R, z)

vR(R, z)

−vz(R, z)
p(R, z)

for R > 1

CHAPTER 2. PROBLEM SETUP 39

where M =g inputParam[MACH] is specified as a user-defined parameter.

void UserDefBoundary (const Data * d, RBox * box, int side, Grid * grid)
{

int i, j, k, nv;
double * x1, * x2, * x3;

x1 = grid[IDIR].x; / * -- array pointer to x1 coordinate -- * /
x2 = grid[JDIR].x; / * -- array pointer to x2 coordinate -- * /
x3 = grid[KDIR].x; / * -- array pointer to x3 coordinate -- * /

if (side == X2_BEG){ / * -- select the boundary side -- * /
BOX_LOOP(box,k,j,i){ / * -- Loop over boundary zones -- * /

if (x1[i] <= 1.0){ / * -- set jet values for r <= 1 -- * /
d->Vc[RHO][k][j][i] = 1.0;
d->Vc[iVR][k][j][i] = 0.0;
d->Vc[iVZ][k][j][i] = g_inputParam[MACH];
d->Vc[PRS][k][j][i] = 1.0/gmm;

}else{ / * -- reflective boundary for r > 1 -- * /
d->Vc[RHO][k][j][i] = d->Vc[RHO][k][2 * JBEG - j - 1][i];
d->Vc[iVR][k][j][i] = d->Vc[iVR][k][2 * JBEG - j - 1][i];
d->Vc[iVZ][k][j][i] = -d->Vc[iVZ][k][2 * JBEG - j - 1][i];
d->Vc[PRS][k][j][i] = d->Vc[PRS][k][2 * JBEG - j - 1][i];

}
}

}
}

This example configuration may be found inside Test Problems/HD/Jet. Note that the previous piece of
code is executed only if you have selected userdef at the X2-beg boundary inside your pluto.ini.

The macro BOXLOOP(box,k,j,i) performs a loop over the bottom boundary zones and, for cell-
centered data, it is equivalent to the macro X2 BEGLOOP(k,j,i) . Similar macros may be used at any
of the other boundaries (X1 BEG, X1 END, X2 END, X3 BEG, X3 END), although the BOXLOOP()
macro has the advantage of being more general since it automatically embeds the stencil index range
for the corresponding variable location (i.e. centered or staggered).

Example #2:

As a second example, we discuss the user-defined boundary condition employed in the shock-cloud
problem (Test Problems/MHD/Shock Cloud/). Here we want to prescribe, at the X1-end boundary, con-
stant pre-shock values on both cell-centered quantities and staggered magnetic fields. The variable
box->vpos is used to select the desired data set.

void UserDefBoundary (const Data * d, RBox * box, int side, Grid * grid)
{

int i, j, k;

if (side == X1_END){ / * -- select the boundary side -- * /
if (box->vpos == CENTER){ / * -- select the variable position -- * /

BOX_LOOP(box,k,j,i){ / * -- Loop over boundary zones -- * /
d->Vc[RHO][k][j][i] = 1.0;
EXPAND(d->Vc[VX1][k][j][i] = -11.2536; ,

d->Vc[VX2][k][j][i] = 0.0; ,
d->Vc[VX3][k][j][i] = 0.0;)

d->Vc[PRS][k][j][i] = 1.0;
EXPAND(d->Vc[BX1][k][j][i] = 0.0; ,

d->Vc[BX2][k][j][i] = g_inputParam[B_PRE]; ,
d->Vc[BX3][k][j][i] = g_inputParam[B_PRE];)

}
}else if (box->vpos == X2FACE){ / * -- y staggered field -- * /

#ifdef STAGGERED_MHD
BOX_LOOP(box,k,j,i) d->Vs[BX2s][k][j][i] = g_inputPara m[B_PRE];

#endif
}else if (box->vpos == X3FACE){ / * -- z staggered field -- * /

#ifdef STAGGERED_MHD
BOX_LOOP(box,k,j,i) d->Vs[BX3s][k][j][i] = g_inputPara m[B_PRE];

#endif
}

}
}

As in the previous example, the macro BOXLOOP() is interchangable, for cell-centered data (box->vpos
== CENTER), with the macro X1 ENDLOOP(k,j,i) but not rigorously for staggered magnetic fields
which are defined on a larger stencil.

CHAPTER 2. PROBLEM SETUP 40

The macro EXPAND(a,b,c) allows to write component-independent code by conditionally com-
piling one, two or three lines (separated by commas) depending on the value taken by COMPONENTS.
Additional macros may be found in the code documentation.

2.4.2.1 Internal Boundary

When UserDefBoundary() is called with side==0 and the macro INTERNAL BOUNDARYhas been
turned to YES inside your definitions.h, the user has full contol over the solution array. This feature
can be used to modify or even overwrite some or all of the cell-centered primitive variables inside a
specific region of the computational domain rather than at boundaries. In this case, the TOT LOOP()
macro should be employed to loop over the (local) computational domain and a user-defined criterion
(typically spatially- or variable-dependent) is used to modify the solution array in the selected zones.

A typical example may occur when a lower (or upper) threshold value should be imposed on phys-
ical variables such as density, pressure or temperature. For instance, the following piece of code sets a
floor value of 10−3 on density:

void UserDefBoundary (const Data * d, RBox * box, int side, Grid * grid)
{

int i,j,k;

if (side == 0){
TOT_LOOP(k,j,i){

if (d->Vc[DN][k][j][i] < 1.e-3) {
d->Vc[DN][k][j][i] = 1.e-3;

}
}

}
...

A more complex example consists of a time-independent region of space where variables are fixed
in time and should not be evolved by the algorithm. If this is the case, you may additionally tell PLUTO
not to update the solution in the specified computational zones during the current time step by enabling
the FLAG INTERNAL BOUNDARYflag.

Example:

The following example (taken from Test Problems/HD/Stellar Wind) shows how to set up a radially sym-
metric spherical wind in cylindrical coordinates inside a small spherical region of radius 1 centered
around the origin. This is achieved by prescribing fixed inflow values for density, pressure and velocity:

void UserDefBoundary (const Data * d, RBox * box, int side, Grid * grid)
{

int i, j, k, nv;
double * x1, * x2, * x3;
double r, r0, cs;
double Vwind = 1.0, rho, vr;

x1 = grid[IDIR].xgc;
x2 = grid[JDIR].xgc;
x3 = grid[KDIR].xgc;

if (side == 0){
r0 = 1.0;
cs = g_inputParam[CS_WIND];
TOT_LOOP(k,j,i){

r = sqrt(x1[i] * x1[i] + x2[j] * x2[j]);
if (r <= r0){

vr = tanh(r/r0/0.1) * Vwind;
rho = Vwind * r0 * r0/(vr * r * r);
d->Vc[RHO][k][j][i] = rho;
d->Vc[VX1][k][j][i] = Vwind * x1[i]/r;
d->Vc[VX2][k][j][i] = Vwind * x2[j]/r;
d->Vc[PRS][k][j][i] = cs * cs/g_gamma * pow(rho,g_gamma);
d->flag[k][j][i] |= FLAG_INTERNAL_BOUNDARY;

}
}

}
...

CHAPTER 2. PROBLEM SETUP 41

The symbol |= (a combination of the bitwise OR operator | followed by the equal sign) turns the
FLAG INTERNAL BOUNDARYbit on in the 3D array d->flag[][][] . This is used by the code to reset
the right hand side of the conservative equations in the selected zones to zero. These computational
cells are thus not evolved in time by PLUTO .

Note: The * box structure should not be used here and staggered magnetic field variables should
not be altered.

2.4.3 The BodyForce...() functions

Body forces are introduced by enabling the BODYFORCEflag in your definitions.h. The force is computed
in terms of the acceleration vector a:

a = −∇Φ+ g , (2.2)

where Φ is the scalar potential and g = (g1, g2, g3) is a three-component acceleration vector.

• The scalar potential can be employed when the BODYFORCEflag is set to POTENTIAL in your
definitions.h. The function BodyForcePotential() should be used to prescribe the analytical
form of Φ ≡ Φ(x1, x2, x3):

double BodyForcePotential(double x1, double x2, double x3)

where x1,x2,x3 are the local zone coordinates and the return value of the function gives the
potential. In this way, PLUTO employs a conservative discretization that conserves total en-
ergy+gravitational energy, see Eq. (3.1) and Eq. (3.7).

As an example, a spherically symmetric point-mass potential Φ = −1/r can be defined using

double BodyForcePotential(double x1, double x2, double x3)
{

return -1.0/x1;
}

• The acceleration vector can be employed when the BODYFORCEflag is set to VECTOR and the three
components of g are prescribed using the function BodyForceVector() :

void BodyForceVector(double * v, double * g,
double x1, double x2, double x3)

where

– * v : a pointer to a vector of primitive quantities (e.g., v[RHO] , v[VX1] , etc...);

– * g: a three-component array (g[IDIR] , g[JDIR] , g[KDIR]) specifying the gravity vector g
components along the coordinate directions;

– x1,x2,x3 : local zone coordinates.

It is also possible to prescribe the body force in terms of a vector and a potential by setting, in your
definitions.h, BODYFORCEto (VECTOR+POTENTIAL).

Note: Non-intertial effects due to a rotating frame of reference (such as Coriolis and centrifugal
forces) should not be specified here since they are automatically handled by PLUTO by enabling
the ROTATINGFRAMEflag in the HD and MHD module, see §3.1.2.

CHAPTER 2. PROBLEM SETUP 42

2.4.4 The Analysis() function

Purpose:

Performs data processing at run-time. pluto.ini sets how often this function has to be called.

Syntax:

void Analysis (const Data * d, Grid * grid)

3. Basic Physics Modules

In this chapter we describe the basic equation modules available in the PLUTO code for the solution of
the fluid equations under different regimes: HydroDynamics (HD), MagnetoHydroDynamics (MHD)
and their relativistic extensions (RHD and RMHD).

We remind that only first-order spatial derivatives accounting for the hyperbolic part of the equations
are described in this chapter whereas the reader is referred to Chap. 4 for a comprehensive description
of the diffusion terms (thermal conduction, viscosity and magnetic resistivity) and cooling.

3.1 The HD Module

The HD module implements and solves the Euler or Navier-Stokes equations of classical fluid dynamics.
The relevant source files and definitions for this module can be found in the Src/HD directory.

3.1.1 Equations

With the HD module, PLUTO evolves in time following system of conservation laws:

∂

∂t

ρ

m

E + ρΦ

+∇ ·

ρv

mv + pI

(E + p+ ρΦ)v

T

=

0

−ρ∇Φ+ ρg

m · g

(3.1)

where ρ is the mass density, m = ρv is the momentum density, v is the velocity, p is the thermal pressure
and E is the total energy density:

E = ρǫ+
m2

2ρ
. (3.2)

An equation of state provides the closure p = p(ρ, ǫ).
The source term on the right includes contributions from body forces and is written in terms of the

(time-independent) gravitational potential Φ and and the acceleration vector g (§2.4.3).
The right hand side of the system of Eqns (3.1) is implemented in the RightHandSide() function

inside Src/HD/rhs.c employing a conservative discretization that closely follows the expression given in
§A.1.1, §A.1.2 and §A.1.3 for Cartesian, polar and spherical geometries (without magnetic fields).

Primitive variables are defined by V = (ρ,v, p)T , where v = m/ρ and

p ≡ ρǫ(Γ− 1) = (Γ− 1)

(

E − m2

2ρ

)

for an ideal equation of state with Γ being the specific heat ratio. The maps U(V) and its inverse are
provided by the functions PrimToCons() and ConsToPrim() .

Primitive variables are generally more convenient and preferred when assigning initial/boundary
conditions and in the interpolation algorithms. The vector of primitive quantities V obeys the quasi-
linear form of the equations:

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0

∂v

∂t
+ v · ∇v +

∇p
ρ

= −∇Φ+ g

∂p

∂t
+ v · ∇p+ ρc2s∇ · v = 0 ,

(3.3)

43

CHAPTER 3. BASIC PHYSICS MODULES 44

where cs =
√

Γp/ρ is the adiabatic speed of sound. The quasi-linear form (3.3) is required during the
predictor stage when TIME EVOLUTIONhas been set to either CHARACTERISTIC TRACING or HANCOCK
and is implemented in the Src/HD/prim eqn.c source file.

3.1.2 Available Options

The HD sub-menu available with the Python script allows to enable some additional features for this
module:

• EOS
select the Equation of State:

– IDEAL: adiabatic equation of state for which the internal energy obeys ρǫ = p/(Γ− 1) where
Γ is constant specific heat ratio. The global variable g gammasets the numerical value of Γ
and can be assigned in the Init() function (default 5/3).

– ISOTHERMAL: isothermal equation of state p = c2isoρ, where ciso (the isothermal sound speed)
can be either a constant value or a spatially-varying quantity. By default, ciso = 1 is a constant
value that can be changed using the global variable g isoSoundSpeed in your init.c, e.g.

g_isoSoundSpeed = 2.0; / * sets the sound speed to be 2 * /

In order to have a space-dependent isothermal speed of sound, one has to copy the source
file Src/HD/eos.c to your local working directory and make the appropriate modification.

Beware that, when this EoS is selected, no energy equation is present and the labels ENand
PRare undefined.

• ENTROPYSWITCH (YES/NO)
By enabling this switch, the equation of conserved entropy is added to the system of conservation
laws:

∂(ρs)

∂t
+∇ · (ρsv) = 0 (3.4)

where s = p/ρΓ is the entropy variable for a constant Γ-law. Equations (3.4) is solved by treating
entropy as a passive scalar. At the end of the integration step, gas pressure is recovered from either
total energy or conserved entropy, according to the control strategy specified in Src/entropy switch.c
which, by default, uses entropy everywhere except at shocks. In other words, if a zone has been
flagged with FLAG ENTROPY(by default away from shocks), then p = p(s) and total energy is
recomputed using this new value of pressure. Otherwise, p = p(E) and entropy is recomputed
using the new pressure value. Note that by enabling this mixed evolution, neither the total en-
ergy nor the entropy will generally be conserved at the numerical level. Also, beware that in the
current code release, the ENTROPYSWITCHis not compatible if used in conjuction with diffusion
operators.

• THERMALCONDUCTION
include thermal conduction effects, see §4.3. The available options are

– NO: thermal condution is not included;

– EXPLICIT: thermal conduction is treated explicitly, §4.4.1;

– SUPER TIME STEPPING: thermal conduction is treated using super-time-stepping, §4.4.2.

• VISCOSITY
include viscous terms, see §4.1. Options are

– NO: viscous terms are not included;

– EXPLICIT: viscosity is treated explicitly, §4.4.1;

– SUPER TIME STEPPING: viscosity is treated using super-time-stepping, §4.4.2.

CHAPTER 3. BASIC PHYSICS MODULES 45

See §4.1 for details.

• ROTATINGFRAME (YES/NO)
Solves the equations in a frame of reference rotating with constant angular velocity Ωz around the
vertical polar axis z. This feature should be enabled only when GEOMETRYis one of CYLINDRICAL,
POLAR or SPHERICAL. The value of Ωz is specified using the global variable g OmegaZinside your
Init() function. The discretization of the angular momentum and energy equations is then done
in a conservative fashion [22, 30]. For example, in polar geometry, we solve

∂

∂t
(ρvR) +∇ · (ρvRv) +

∂p

∂R
=

ρ(vφ + w)2

R

∂

∂t

[

Rρ(vφ + wz)
]

+∇ · [Rρ(vφ + w)v] +
∂p

∂φ
= 0

∂

∂t

(

E +
w2

z

2
ρ+ wρvφ

)

+∇ ·
[

FE +
w2

2
ρv + wρvφv

]

= 0

(3.5)

where w = RΩz , R is the cylindrical radius and FE is the standard energy flux and body force
terms have been omitted only for the sake of exposition.

Note that the source term in the radial component of the momentum equation implicitly contains
the Colios force and centrifugal terms:

ρ(vφ + w)2

R
=
ρv2φ
R

+ 2ρvφΩz + ρΩ2
zR (3.6)

On the other hand, the azimuthal component of the Coriolis force has been incorporated directly
into the fluxes using the conservation form. An example of such a configuration in polar or spher-
ical geometry may be found in the directory Test Prob/HD/DiskPlanet.

CHAPTER 3. BASIC PHYSICS MODULES 46

3.2 The MHD Module

The MHD module is suitable for the solution of the ideal or resistive (non-relativistic) magnetohydro-
dynamical equations. Source and definition files are located inside the Src/MHD directory tree.

3.2.1 Equations

With the MHD module, PLUTO solves the following system of conservation laws:

∂

∂t

ρ

m

E + ρΦ

B

+∇ ·

ρv

mv −BB + Ipt

(E + pt + ρΦ)v −B (v ·B)

vB −Bv

T

=

0

−ρ∇Φ+ ρg

m · g
0

(3.7)

where ρ is the mass density, m = ρv is the momentum density, v is the velocity, pt = p + B2/2 is the
total pressure (thermal + magnetic), B is the magnetic field1 and E is the total energy density:

E = ρǫ+
m2

2ρ
+

B2

2
. (3.8)

where an additional equation of state provides the closure p = p(ρ, ǫ). The source term on the right
includes contributions from body forces and is written in terms of the (time-independent) gravitational
potential Φ and and the acceleration vector g (§2.4.3).

Note that the induction equation may equivalently be written as

∂B

∂t
+∇× E = 0 , (3.9)

where E = −v ×B is the electric field.
The right hand side of the system of Eqns (3.7) is implemented in the RightHandSide() function

inside Src/MHD/rhs.c employing a conservative discretization that closely follows the expression given
in §A.1.1, §A.1.2 and §A.1.3 for Cartesian, polar and spherical geometries.

The sets of conservative and primitive variables U and V are given by:

U =
(

ρ, m, E, B
)T

, V =
(

ρ, v, p, B
)T

.

The maps U(V) and its inverse are provided by the functions PrimToCons() and ConsToPrim() .
The primitive form of the equations is

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0

∂v

∂t
+ v · ∇v +

1

ρ
B × (∇×B) +

1

ρ
∇p = −∇Φ+ g

∂B

∂t
+B(∇ · v)− (B · ∇)v + (v · ∇)B = v (∇ ·B)

∂p

∂t
+ v · ∇p+ ρc2s∇ · v = 0 ,

(3.10)

where the (∇·B) on the right hand side of the third equation is kept for reasons of convenience, although
zero at the continuous level.

1A factor of 1/
√
4π has been absorbed in the definition of magnetic field.

CHAPTER 3. BASIC PHYSICS MODULES 47

3.2.2 Available Options

When setting up your problem with Python, a second menu should follow up. This menu allows one to
choose:

• EOS
Select the equation of state. Options are the same as the HD module (§3.1.2).

• ENTROPYSWITCH (YES/NO)
Solve the entropy equation in addition to the total energy equation in the same way as done for
the HD module, §3.1.2.

• MHDFORMULATION
Select a strategy to enforce the ∇ ·B = 0 constraint2. Possible values are

– NONE
divergence constraint is not controlled by any algorithm. Recommended for one-dimensional
problems or 2D configurations with purely azimuthal fields.

– EIGHT WAVES
magnetic fields retain a cell average representation and the eight wave formulation intro-
duced by Powell [38] is used, see §3.2.4.1;

– DIV CLEANING
magnetic fields retain a cell average representation and the mixed hyperbolic/parabolic di-
vergence cleaning technique of [13, 34] is used, see §3.2.4.2. A new scalar variable, the gener-
alized Lagrange multiplier ψ (PSI GLM) is introduced.

– CONSTRAINED TRANSPORT
the magnetic field has a staggered representation and the constrained transport is used, see
§3.2.4.3.

• BACKGROUNDFIELD (YES/NO)
Split the magnetic field into a static contribution and a time dependent deviation, see §3.2.5 for
how to use this feature.

• RESISTIVE MHD
Include resistive terms in the MHD equations, see §4.2. The available options are

– NO: resistivity is not included;

– EXPLICIT: resistivity is included explicitly, §4.4.1;

– SUPER TIME STEPPING: resistivity is treated using super-time-stepping, §4.4.2.

• THERMALCONDUCTION
Include anisotropic thermal conduction flux, see §4.3. Options are the same as for the HD module,
§3.1.2.

• VISCOSITY:
Include viscosity terms in the MHD equations, §4.1. Options are the same as for the HD module,
§3.1.2.

• ROTATINGFRAME (YES/NO)
Solves the equations in a rotating frame, see the HD module §3.1.2.

2Numerical methods do not naturally preserve the condition ∇ ·B = 0.

CHAPTER 3. BASIC PHYSICS MODULES 48

3.2.3 Assigning Magnetic Field Components

Magnetic field components are initialized in your Init() function just like any other flow quantity.
Depending on the value of ASSIGN VECTORPOTENTIALin your definitions.h, two alternative initializa-
tions are possible:

1. By setting ASSIGN VECTORPOTENTIALto NO, you can assign the component of magnetic field in
the usual way by directly prescribing the values for us[BX1] , us[BX2] and us[BX3] .

2. When ASSIGN VECTORPOTENTIAL is set to YES, the vector potential A is used instead and the
magnetic field is recovered from B = ∇×A. This option guarantees that the initial field has zero
divergence in the discretization which is more appropriate for the underlying formulation (i.e.,
cell or face centered fields, §3.2.4).

Note: In 2D, only the third component of A (that is us[AX3]) should be used. Likewise, the third
component of the magnetic field (Bz) cannot be assigned through the vector potential an must be
prescribed in the standard way, see the third example in Table 3.1.

Table 3.1 shows some examples of magnetic field initializations with and without using the vector
potential.

Magnetic Field Standard Using Vector Potential

B = (0, 5, 0)
Cartesian, 2D

us[BX1] = 0.0;
us[BX2] = 5.0;
us[BX3] = 0.0;

us[AX1] = 0.0;
us[AX2] = 0.0;
us[AX3] = -x1 * 5.0;

B = (0, 5, 0)
Cylindrical, 2D

us[BX1] = 0.0;
us[BX2] = 5.0;
us[BX3] = 0.0;

us[AX1] = 0.0;
us[AX2] = 0.0;
us[AX3] = 0.5 * x1 * 5.0;

B = (− sin y, sin 2x, 2)
Cartesian, 2.5D

us[BX1] = -sin(x2);
us[BX2] = sin(2.0 * x1);
us[BX3] = 2.0;

us[AX1] = 0.0;
us[AX2] = 0.0;
us[AX3] = cos(x2)+0.5 * cos(2.0 * x1);
us[BX3] = 2.0;

Table 3.1: Examples of how the magnetic field may be initialized. Direct initialization (standard) is possible
whenASSIGN VECTORPOTENTIAL is set to NO. Otherwise, the components of the vector potential are used (third column).

CHAPTER 3. BASIC PHYSICS MODULES 49

3.2.4 Controlling the ∇ ·B = 0 Condition

3.2.4.1 Eight-Wave Formulation

In the eight-wave formalism [38, 40] magnetic fields have a cell-centered representation. Additional
source terms are added on the right hand side of Eqns (3.7):

∂

∂t

ρ

m

E

B

+ · · · = −∇ ·B

0

B

v ·B
v

Contributions to ∇·B are taken direction by direction. Note that the 8-wave formulation keeps ∇·B = 0
only at the truncation level and NOT to machine accuracy. More accurate treatments of the solenoidal
condition can be achieved using the other two formulations. The 8-wave formulation should be used in
conjunction any Riemann solver with the exception of hlld.

3.2.4.2 Hyperbolic Divergence Cleaning (GLM and EGLM)

In [13] (see also [33, 34] for additional discussion), the divergence free constraint is enforced by solv-
ing a modified system of conservation laws, where the induction equation is coupled to a generalized
Lagrange multiplier (GLM). Using the mixed GLM hyperbolic/parabolic correction, the induction equa-
tion and the solenoidal constraint are replaced, respectively, by

∂B

∂t
+∇ · (vB −Bv) +∇ψ = 0 ,

∂ψ

∂t
+ c2h∇ ·B = −c

2
h

c2p
ψ , (3.11)

where ch = CFL × ∆lmin/∆t
n is maximum speed compatible with the step size, cp =

√

∆lminch/α
and ∆lmin is the minimum cell length. The free parameter α, [33], controls the rate at which monopole
are damped and has a default value 0.1. It can be easily modified by introducing the user-defined
parameter ALPHAGLM, §2.1, or by directly editing Src/MHD/GLM/glm solve.c. A number of tests suggests
that the optimal range can be found for 0.05 . α . 0.3. In the mixed formulation, divergence errors are
transported to the domain boundaries with the maximal admissible speed and are damped at the same
time.

By default, ψ is set to zero in the initial and boundary conditions but the user is free to change it at
a user-defined boundary by prescribing d→Vc[PSI GLM][k][j][i] (inside UserDefBoundary())
which has the usual cell-centered representation. The scalar multiplier is not written to disk except for
the double format, §6, needed for restart.

The advantage of this formulation (GLM-MHD) is that the equations retain a conservative form (no
source terms are introduced), all variables (including magnetic fields) retain a cell-centered representa-
tion and standard 7-wave Riemann solvers (with a single value of the normal component of magnetic
field) may be used.

A slightly different formulation (EGLM-MHD), breaking momentum and energy conservation, has
been found to be more robust in problems involving strongly magnetized media. The EGLM form of
the equations [13, 33] can be obtained by setting #define EGLM to YES inside Src/MHD/GLM/glm.h. For
a complete description of the GLM- and EGLM-MHD formulation and its implementation in PLUTO
refer to [33, 34].

CHAPTER 3. BASIC PHYSICS MODULES 50

3.2.4.3 Constrained Transport (CT)

In this formulation [3, 20, 14], two sets of magnetic fields are used:

• face-centered magnetic field (b hereafter);

• cell-centered magnetic field (B hereafter).

The primary set is the first one, where the three components of the field are located at different spatial
points in the control volume, that is

bx1,i+
1

2
,j,k , bx2,i,j+

1

2
,k , bx3,i,j,k+

1

2

see Fig. 3.1. In Cartesian coordinates, for instance, bx is located at X-faces whereas by lives at Y-faces, etc.,
see the boxes and triangles in Fig. 2.5. This feature must be used only in conjunction with an unsplit integrator.
With CT, the solenoidal condition is maintained at machine accuracy as long as field initialization is done
using the vector potential, §3.2.3.

The staggered magnetic field is treated as an area-weighted average on the zone face and Stoke’s
theorem is used to update it:

∫ (

∂b

∂t
+∇× E

)

· dSd = 0 =⇒ dbxd

dt
+

1

Sd

∮

E · dl = 0 (3.12)

Please note that the staggered components are initialized and integrated also on the boundary interfaces
in the corresponding staggered direction. In other words, the interior values are

bx1,i+
1

2
,j,k :

IBEG − 1 ≤ i ≤ IEND

JBEG ≤ j ≤ JEND

KBEG ≤ k ≤ KEND

bx2,i,j+
1

2
,k :

IBEG ≤ i ≤ IEND

JBEG − 1 ≤ j ≤ JEND

KBEG ≤ k ≤ KEND

bx3,i,j,k+
1

2

:

IBEG ≤ i ≤ IEND

JBEG ≤ j ≤ JEND

KBEG − 1 ≤ k ≤ KEND

Thus bx1,i+
1

2
,j,k is NOT a boundary value for i = IBEG − 1, JBEG ≤ j ≤ JEND, KBEG ≤ k ≤ KEND but

it is considered part of the solution !! Similar considerations hold for bx2
and bx3

components at the x2
and x3 boundaries, respectively.

The electromotive force (EMF) E is computed at zone edges, see Fig. 3.1 by a proper averaging/reconstruction
scheme (set by CT EMFAVERAGEinside your definitions.h). Options are:

• CT EMFAVERAGE= ARITHMETIC yields yields a simple arithmetic averaging [3] of the fluxes
computed during the upwind steps. In this case, one has available

0
−Ex3

Ex2

i+ 1

2
,j,k

,

Ex3

0
−Ex1

i,j+ 1

2
,k

,

−Ex2

Ex1

0

i,j,k+ 1

2

during the x1, x2 and x3 sweeps, respectively. The arithmetic average follows:

Ex1,i,j+
1

2
,k+ 1

2

=
1

4

(

Ex1,j,k+
1

2

+ Ex1,i,j+1,k+ 1

2

+ Ex1,i,j+
1

2
,k + Ex1,i,j+

1

2
,k+1

)

CHAPTER 3. BASIC PHYSICS MODULES 51

Ω

y

x

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

z

−+
z
++

+0b
x

0+b

Ω
z

+−

y

p , B00

z

00

Ω

Ω

�
�
�

�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

x

z

y

Ω

Ω

0−+

−0+

0+−

Ω

Ω

Ω

Ω
0++

++0

−+0

+−0Ω

+0−

z z

y

x

y

z

x

x

y

Ω+0+

+00

00+

0+0

b

b

x

z

y

000p

b
��
��
��

��
��
��

Figure 3.1: Collocation points in 2.x D (left) and in 3D (right). Cell-centered quantities are given as green circles, face-centered
as red squares and edge-centered as blue diamonds.

Ex2,i+
1

2
,j,k+ 1

2

=
1

4

(

Ex2,i+
1

2
,j,k + Ex2,i+

1

2
,j,k+1 + Ex2,i,j,k+

1

2

+ Ex2,i+1,j,k+ 1

2

)

Ex3,i+
1

2
,j+ 1

2
,k =

1

4

(

Ex3,i+
1

2
,j,k + Ex3,i+

1

2
,j+1,k + Ex3,i,j+

1

2
,k + Ex3,i+1,j+ 1

2
,k

)

Although being the simplest one, this average procedure may suffer from insufficient dissipation
in some circumstances ([14, 20]) and does not reduce to its one dimensional equivalent algorithm
for plane parallel grid aligned flows.

• CT EMFAVERAGE= UCT HLL uses a two dimensional Riemann solver based on a four-state HLL
flux function, see [54, 20]. If the fully unsplit HANCOCK or CHARACTRISTIC TRACING scheme is
used, the Courant number must be CFL . 0.7 (in 2D) and CFL . 0.35 (in 3D).

• CT EMFAVERAGE= UCT0 or CT EMFAVERAGE= UCT CONTACT employs the face-to-edge inte-
gration procedures proposed by [14], where electromotive force derivatives are averaged from
neighbor zones (UCT0) or selected according to the sign of the contact mode (UCT CONTACT). The
former has reduced dissipation and is preferably used with linear interpolants and RK integrators,
while the latter shows better dissipation properties.

All algorithms, with the exception of the arithmetic averaging, reduce to the corresponding one dimen-
sional scheme for grid aligned flows. However, in our experience, UCT HLL and UCT CONTACT show the
best dissipation and stability properties. The CT formulation works with any of the Riemann solvers.

Assigning Boundary Conditions. Within the CT framework, user-defined boundary conditions (b.c.)
must be assigned on the staggered components as well. This is done in your UserDefBoundary()
function using the d→Vs[nv][k][j][i] array, where nv gives the staggered component: BX1s, BX2s
or BX3s.

Note: In PLUTO we follow the convention that the cell “center” owns its right interface, e.g., ‘i’
means i+ 1

2
. Thus:

bx1,i+
1

2
,j,k ≡ d→Vs[BX1s][k][j][i] ;

bx2,i,j+
1

2
,k ≡ d→Vs[BX2s][k][j][i] ;

bx3,i,j,k+
1

2

≡ d→Vs[BX3s][k][j][i] ;

CHAPTER 3. BASIC PHYSICS MODULES 52

Beware that the three staggered components have different spatial locations and the BOXLOOP(box,k,j,i)
macro introduced in §2.4.2 automatically implements the correct loop over the boundary ghost zones.
Thus, at the x1 boundary, for instance, one needs to assign

bx2,i,j+
1

2
,k at x1,i, x2,j+ 1

2

, x3,k

bx3,i,j,k+
1

2

at x1,i, x2,j , x3,k+ 1

2

}

for i = 0, · · · , IBEG-1

The component normal to the interface (bx1
in this case) should NOT be assigned since it is automatically

computed by PLUTO from the ∇ ·B = 0 condition after the tangential components have been set.

Example:

The following example prescribes user-defined boundary conditions at the lower x2 boundary for the
MHD jet problem (see PLUTO/Test Problems/MHD/Jet) in cylindrical coordinates (x1 ≡ R, x2 ≡ z).
Inflow conditions are given as (ρ, vR, vz, p, Br, Bz) = (1, 0, 10, 1/Γ, 0, 3) for R ≤ 1 while a symmetric
counter-jet is assumed for R > 1:

if (side == X2_BEG){

JETVAL(vjet); / * -- beam/jet values -- * /
R = grid[IDIR].x; / * -- cylindrical radius -- * /

if (box->vpos == CENTER){ / * -- select cell-centered varaibles only -- * /
BOX_LOOP(box, k, j, i){ / * -- loop on boundary zones -- * /

for (nv = 0; nv < NVAR; nv++) vout[nv] = d->Vc[nv][k][2 * JBEG-j-1][i];
vout[VX2] * = -1.0;
#if PHYSICS == MHD

vout[BX1] * = -1.0;
#endif
for (nv = 0; nv < NVAR; nv++) / * -- smooth out the two solutions -- * /

d->Vc[nv][k][j][i] = vout[nv] + (vjet[nv] - vout[nv]) * Profile(R[i],nv);
}

}else if (box->vpos == X1FACE){ / * -- select x1-staggered component -- * /
#ifdef STAGGERED_MHD

Rp = grid[IDIR].A; / * -- right interface area -- * /
BOX_LOOP(box, k, j, i){

bxsout = -d->Vs[BX1s][k][2 * JBEG - j - 1][i];
d->Vs[BX1s][k][j][i] = bxsout * (1.0 - Profile(rp[i],BX));

}
}
#endif

}

Here STAGGEREDMHDis defined only in the MHD constrained transport and the boundary conditions
are assigned on bx1

≡ bR only (i.e. the orthogonal component).

3.2.5 Background Field Splitting

In situations where an intrinsic background magnetic field is present (e.g. planetary magnetosphere,
stellar dipole fields), it may be convenient to write the total magnetic field as B(x, t) = B0(x)+B1(x, t)
where B0 is a background curl-free magnetic field and B1(x, t) is a deviation. The background field
must satisfy the following conditions:

∂B0

∂t
= 0 , ∇ ·B0 = 0 , ∇×B0 = 0 .

In this case one can show [38] that the MHD equations reduce to:

∂ρ

∂t
+∇ · (ρv) = 0

∂m

∂t
+∇ ·

(

mv −B1B −B0B1

)

+∇pt = ρ(−∇Φ+ g)

∂(E1 + ρΦ)

∂t
+∇ ·

[

(E1 + pt + ρΦ)v − (v ·B1)B
]

= m · g
∂B1

∂t
−∇× (v ×B) = 0

CHAPTER 3. BASIC PHYSICS MODULES 53

where

pt = p+
B2

1

2
+B1 ·B0 , E1 =

p

Γ− 1
+

1

2

(

ρv2 +B2
1

)

Thus the energy depends only on B1, a feature that turns out to be useful when dealing with low-beta
plasma. The sets of conservative and primitive variables are the same as the original ones, with B → B1,
E → E1.

In order to enable this feature, the macro BACKGROUNDFIELD must be turned to YES in your
definitions.h. The initial and boundary conditions must be imposed on B1 alone while the function
BackgroundField() can be added to your init.c to assign B0:

void BackgroundField (double x1, double x2, double x3, doub le * B0)

Examples can be found in the 4th configuration of Test Problems/MHD/Rotor/ and in the 8th configu-
ration of Test Problems/MHD/Blast/.

Note: This feature should only be used with the HLL Riemann solver, a Runge-Kutta time stepping
and the CT formulation.

CHAPTER 3. BASIC PHYSICS MODULES 54

3.3 The RHD Module

The RHD module implements the equations of special relativistic fluid dynamics in 1, 2 or 3 dimensions.
Velocities are always assumed to be expressed in units of the speed of light. The special relativistic
module comes with 2 different equations of state, and it also works in curvilinear coordinates. Gravity
can also be incorporated, but it is treated as a Newtonian approximation. The relevant source files and
definitions for this module can be found in the Src/RHD directory.

3.3.1 Equations

The special relativistic module evolves the conservative set U of state variables

U =
(

D, m1, m2, m3, E
)T

where D is the laboratory density, mx1,x2,x3 are the momentum components, E is the total energy (in-
cluding contribution from the rest mass). The evolutionary conservative equations are

∂

∂t

D

m

E

+∇ ·

Dv

mv + pI

m

T

= 0

where v is the velocity, p is the thermal pressure. The relativistic module is designed with 2 sets of
primitive quantities, V v and V U . The first set, V v , includes the rest-mass density ρ, three-velocity
v = (vx1, vx2, vx3) and pressure p, whereas the second one replaces the ordinary velocity with the four-
velocity:

V v =
(

ρ, vx1, vx2, vx3, p
)T

, V U =
(

ρ, ux1, ux2, ux3, p
)T

The Lorentz factor γ is readily computed as:

γ =
1√

1− v2
=
√

1 + u2

Using the four-velocity in place of the three-velocity offers in some circumstances the advantage that
the total velocity |v| = |u|/

√
1 + u2 is always less than 1 by construction, for any 0 ≤ |u| < ∞. This is

not always the case when the three-velocity is used and precautionary measures are used to ensure that
|v| < 1. The relation between U and V is more complicated and is expressed by

D = ργ , m = ρhγ2v = ρhγu , E = ρhγ2 − p

where h is the specific enthalpy (see §3.3.2 for available equation of states).
In order to express the equations in primitive (quasi-linear) form, one assumes δp = c2sδe, where cs

is the adiabatic speed of sound:

∂ρ

∂t
+ v · ∇ρ− 1

c2sh
v · ∇p =

1

c2sh

∂p

∂t

∂v

∂t
+ v · ∇v +

1

ρhγ2
∇p = − v

ρhγ2
∂p

∂t
+ a

∂p

∂t
+

1

1− v2c2s

[

c2sρh∇ · v + (1− c2s)v · ∇p
]

= 0 .

(3.13)

For more detailed expressions and the characteristic decomposition, see [26].

CHAPTER 3. BASIC PHYSICS MODULES 55

3.3.2 Available options

The RHD sub-menu allows to change the following switches:

• EOS
select the equation of state:

– IDEAL: ideal equation of state with constant polytropic index Γ: ρh = ρ+
Γ

Γ− 1
p. The specific

heat ratio may be fixed using the global variable g gamma.

– TAUB: quadratic approximation to the theoretical relativistic perfect gas EOS (Γ → 5/3 in the
low temperature limit, and Γ → 4/3 in the high temperature limit, see [26]):

(h− p

ρ
)(h− 4

p

ρ
) = 1 .

• USEFOURVELOCITY (YES/NO)
Use the four-velocity u = γv instead of the three velocity in the primitive set of variables. Notice
that initial and boundary conditions must be given using the four velocity u and NOT v.

• ENTROPYSWITCH (YES/NO)
Replace the total energy equation with the entropy equation away from shocks. This feature is
implemented in the same way as for the HD and MHD modules, see §3.1.2.

CHAPTER 3. BASIC PHYSICS MODULES 56

3.4 The RMHD Module

The RMHD module implements the equations of special relativistic magnetohydrodynamics in 1, 2 or
3 dimensions. Velocities are always assumed to be expressed in units of the speed of light. Source and
definition files are located inside the Src/RMHD directory tree.

3.4.1 Equations

The RMHD module solves the following system of conservation laws:

∂

∂t

D

m

E

B

+∇ ·

Dv

wtγ
2vv − bb+ Ipt

m

vB −Bv

T

= 0 (3.14)

where D is the laboratory density, m is the momentum density, E is the total energy (including contri-
bution from the rest mass):

D = γρ

m = wtγ
2v − b0b

E = wtγ
2 − b0b0 − pt

,

b0 = γv ·B
b = B/γ + γ(v ·B)v

wt = ρh+B2/γ2 + (v ·B)2

pt = p+
B2/γ2 + (v ·B)2

2

Notice that the components of the momentum tensor may also be written as:

M ij = wtu
iuj − bibj = mivj − biBj

γ
= mivj −

(

Bi

γ2
+ viv ·B

)

Bj

The RMHD module is designed with one set of primitive quantities, V = (ρ,v, p,B). The quasi-
linear form of the RMHD is not available yet and algorithms using the characteristic decomposition of
the equations or the quasi-linear form are not available. Therefore, the CHARACTERISTIC TRACING
step cannot be used and the HANCOCK scheme works by default using the conservative predictor step
rather than the primitive one. On the other hand, Runge-Kutta type integrators works well for the
RMHD module.

The available equations of state are the constant Γ-law and the TAUB EoS already introduced for the
RHD module (see [31] for the extension of this EoS to the RMHD equations).

3.4.2 Available Options

The RMHD sub-menu offers some of the switches already discussed in the MHD module (§3.2.2) or
in the RHD (§3.3.2) module. Divergence control is achieved using the same algorithms introduced for
MHD, namely: 8-wave (§3.2.4.1), divergence cleaning (§3.2.4.2) and the constrained transport (§3.2.4.3).

4. Non Ideal Effects

This chapter shows how non-ideal effects can be included in PLUTO . These include

• Viscosity (HD, MHD), described in §4.1;

• Resistivity (MHD), described in §4.2;

• Thermal conduction (HD, MHD), described in §4.3.

• Optically thin radiative cooling §4.5.

Each modules can be individually turned on in the physics sub-menus accessible via the Python script.
Numerical integration of diffusion processes (viscosity, resistivity and thermal conduction) requires

the solution of mixed hyperbolic/parabolic partial differential equations which can be carried out using
either a standard explicit time-stepping scheme or the Super-Time-Stepping (STS) technique, see §4.4.
Depending on the time step restriction, you may include diffusion processes by setting the correspond-
ing sub-menu voice(s) to EXPLICIT or to SUPER TIME STEPPING, respectively.

4.1 Viscosity

The viscous stresses enter the HD and MHD equations with two parabolic diffusion terms in the mo-
mentum and the energy conservation. Adding the viscous stress tensor to the original conservation law,
Eq. (1.1), we obtain a mixed hyperbolic/parabolic system which, in compact form, may be expressed by
the following:

∂U

∂t
+∇ · T = ∇ · Π+ S (4.1)

where Π represents the viscous stress tensor, whose components are given by

(Π)ij = 2
η

hihj

(

vi;j + vj;j
2

)

+

(

ηb −
2

3
η

)

∇ · vδij . (4.2)

Coefficients η and ηb are the first (shear) and second (bulk) parameter of viscosity respectively, vi;j and
vj;i denote the covariant derivatives whereas hi, hj are the geometrical elements of the respective direc-
tion. The expression above holds for an isotropic viscous stress and the resulting tensor is symmetric,
with (Π)ij = (Π)ji.

The actual diffusion terms will then be given by ∇·Π and ∇· (v ·Π) at the right hand side of the mo-
mentum and the energy equation respectively. This form allows us to include a parabolic update in the
actual momentum and energy fluxes (if EXPLICIT is chosen) but the geometrical source terms deriving
from the tensor’s divergence are added to the right hand side of the equations. On the other hand, if STS
is chosen, advection and diffusion terms are separated via operator splitting and viscous contribution
is included as a source term and computed with STS. The formalism used is the one described in the
developer’s guide for symmetric tensors.

The implementation of the previous expressions together with the equation module can be found
under the directory Src/Viscosity. Derivative terms are discretized at cell interfaces using second-order
accurate finite differences and assuming a uniform grid spacing.

Note that when using FARGO-MHD, this module can operate only with STS.

57

CHAPTER 4. NON IDEAL EFFECTS 58

4.1.1 Viscous Coefficients

The viscous transport coefficients η (shear, eta1 visc()) and ηb (bulk, eta2 visc()) are defined in
the file eta visc.c which we suggest that the user should copy from the PLUTO/Src/Viscosity/ folder to
the actual working directory and then modify it. Even though the behaviour of these coefficients is
arbitrary, according to the user’s needs, for mono-atomic gases Molecular Theory gives ηb = 0. The
coefficient of shear viscosity η, on the other hand, is usually specified with a power law behaviour with
respect to the temperature (e.g. the Sutherland formula). For more information on the analytical and
numerical treatment of viscosity see [18] and [50]. It should be noted, nonetheless, that both transport
coefficients must have dimensions of ρ× length2/time, for the correct control of the timestep, according
to the stability condition discussed at the beginning of this chapter.

4.2 Resistivity

Magnetic field diffusion effects are modeled by introducing the resistivity tensor η so that the electric
field becomes Ω = −v ×B + η · J , where J ≡ ∇×B is the current density. The induction and energy
equations gain extra terms on the right hand sides:

∂B

∂t
+∇× (−v ×B) = −∇× (η · J)

∂E

∂t
+∇ · [(E + pt)v −B (v ·B)] = −∇ · [(η · J)×B] .

(4.3)

Similarly, the internal energy equation modifies to

∂p

∂t
+ v · ∇p+ ρc2s∇ · v = (Γ− 1) (η · J) · J . (4.4)

The expressions on the right hand side and the corresponding equation module can be found inside
Src/MHD/Resistive. The module works on uniform grids in 1, 2 and 3 dimensions in all systems of
coordinates.

The EXPLICIT integration is compatible with both the cell centered formulations (8-wave and diver-
gence cleaning) and the constrained transport algorithm, whereas the SUPER TIME STEPPING works
only with cell-centered magnetic fields (CT is NOT supported at the moment). Copying the resistivity
function PLUTO/Src/MHD/Resistive MHD/res eta.c (defining the components of η) into the working di-
rectory, the user can modify the file according to the particular problem. The input arguments are the
grid coordinates and the face centered local values of the primitive variables. Note that the resistive
module is not yet compatible with the entropy switch.

4.3 Thermal Conduction

Thermal conduction can be included for the hydro (HD) or MHD equations by introducing an additional
divergence term in the energy equation:

∂E

∂t
+∇ · [(E + pt)v −B (v ·B)] = ∇ · F c , (4.5)

where F c is a flux-limited expression that smoothly varies between the classical and saturated thermal
conduction regimes F class and Fsat, respectively ([44, 37]):

F c =
Fsat

Fsat + |F class|
F class . (4.6)

In the MHD case, thermal conductivity is highly anisotropic being largely suppressed in the direction

transverse to the field. Denoting with b̂ = B/|B| the unit vector in the direction of magnetic field, the
classical thermal conduction flux may be written as ([2]):

F class = κ‖b̂
(

b̂ · ∇T
)

+ κ⊥

[

∇T − b̂
(

b̂ · ∇T
)]

, (4.7)

CHAPTER 4. NON IDEAL EFFECTS 59

where the subscripts ‖ and ⊥ denote, respectively, the parallel and normal components to the magnetic
field, T is the temperature, κ‖ and κ⊥ are the thermal conduction coefficients along and across the field.
In the purely hydrodynamical limit (no magnetic field), Eq. (4.7) reduces to F c = κ‖∇T .

Saturated effects ([44, 11]) are accounted for by making the flux independent of ∇T for very large
temperature gradients. In this limit, the flux magnitude approaches Fsat = 5φρc3iso where is the isother-
mal speed of sound and φ < 1 is a free parameter.

The coefficients appearing in Eq. (4.7), (4.6) and in the definition of the saturated flux may be spec-
ified using the function TC kappa() in (your local copy of) PLUTO/Src/Thermal Conduction/tc kappa.c
and by noting the equivalence κ‖ → ∗kpar, κ⊥ → ∗knor and φ → ∗phi. The variable ∗knor can be
ignored in the HD case, where κ = κ‖. Proper setting of units and dimensions is briefly discussed in
§4.3.1.

The thermal conduction module is implemented inside Src/Thermal Conduction and works in 1, 2
and 3 dimensions in all systems of coordinates (note that it is not yet compatible with the entropy
switch). Derivative terms are discretized at cell interfaces using second-order accurate finite differences
and assuming a uniform grid spacing. Integration may proceed via standard explicit time stepping or
Super-Time-Stepping, see §4.4.

Note: Thermal conduction behave like a purely parabolic (diffusion) operator in the classical limit
(φ → ∞) and like a hyperbolic operator in the saturated limit (|∇T | → ∞). Thus in the general
case a mixed treatment is required, where the parabolic term is discretized using standard central
differences and the saturated term follows an upwind rule, [4, 29].
In this case and when Super-Time-Stepping integration is used to evolve the equations, sev-
eral numerical tests have shown that problem involving strong discontinuities may require
a reduction of the parabolic Courant number Cp (see §4.4) and a more tight coupling be-
tween the hydrodynamical and thermal conduction scale. The latter condition may be accom-
plished by lowering the rmax par parameter (§2.3) which controls the ratio between the cur-
rent time step and the diffusion time scale, see also §4.4. An example problem can be found in
Test Problems/MHD/Thermal conduction/Blast.

4.3.1 Dimensions

Equations (4.5)-(4.7) are solved in dimensionless form by expressing energy and time in units of ρ0v
2
0

and L0/v0 (respectively) and by writing temperature as T = p/ρ × KELV IN × µ, where p and ρ are
in code units and µ is the mean molecular weight. Here ρ0, v0, L0 and KELV IN are constants (in
c.g.s units) giving the units of density, velocity, length and the temperature conversion factor, see §4.5.1
and Eq. (4.12)-(4.13). The thermal conduction coefficients must be properly defined by re-absorbing the
correct normalization constants in the TC kappa() function as follows

κ→ κcgs
µmu

ρ0v0L0kB
(4.8)

where, for instance, one may use κcgs,‖ = 5.6 · 10−7T 5/2 and κcgs,⊥ = 3.3 · 10−6n2H/(
√
TB2

cgs), both

in units of erg s−1 K−1 cm−1, while B2
cgs = 4πρ0v

2
0B

2. An example of such dimensionalization can be
found in Test Problems/MHD/Thermal Conduction/Blast.

CHAPTER 4. NON IDEAL EFFECTS 60

4.4 Numerical Integration of Diffusion Terms

4.4.1 Explicit Time Stepping

With the explicit time integration, parabolic contributions are added to the upwind hyperbolic fluxes at
the same time in an unsplit fashion:

F → F hyp + F par (4.9)

where ”hyp” and ”par” are, respectively, the hyperbolic and parabolic fluxes (see also §3.1 of [29]).
Such methods are, however, subject to a rather restrictive stability condition since, in the diffusion-

dominated limit, ∆t ∼ ∆l2/η where η is the maximum diffusion coefficient, see Table 2.1 for the exact
limiting factor.

Clearly, high resolution and large diffusion coefficients may lead to drastic reduction of the time step
thus making the computation almost impracticable.

4.4.2 Super-Time-Stepping (STS)

STS, [1], is a technique that considerably accelerates the standard explicit treatment of parabolic terms.
In this case parabolic terms are treated in a separate step using operator splitting and the solution vector
is evolved over a super time step, equal to the advective one. The superstep consists of N sub-steps,
properly chosen for optimization and stability, depending on the diffusion coefficient, the grid size and
the free parameter ν < 1 (STS nu set in definitions.h):

∆tn = ∆tpar
N

2
√
ν

(1 +
√
ν)2N − (1−√

ν)2N

(1 +
√
ν)2N + (1−√

ν)2N
, with ∆tpar =

Cp

2

Ndim

max
ijk

(

∑

d

Dd

∆l2d

) . (4.10)

Here ∆tpar is the explicit parabolic time step computed in terms of the diffusion coefficient D and physi-
cal length ∆l. The previous equation is solved to find N for given values of ∆tn, ∆tpar and ν. For ν → 0,
STS is asymptotically N times faster that the standard explicit scheme. However, very low values of ν
may result in an unstable integration whereas values close to 1 can decrease STS’s efficiency. By default
ν = 0.01, a value which in many cases retains stability whereas giving substantial gain, see Fig 4.1.

Stability analysis for the constant coefficient diffusion equation, [5], indicates that the value of Cp

(parabolic Courant number) should be ≤ 1/Ndim (Ndim is the number of spatial dimensions) and it may
be used to adjust the size of the spectral radius for strongly nonlinear problems. A reduction of Cp will
results in increased stability at the cost of more substeps N . The default value is Cp = 0.8/Ndim but it
may be changed in your pluto.ini through CFL par, see §2.3.

Since STS treats parabolic equations in an operator-split formalism, it may be advisable (for highly
nonlinear problems involving strong discontinuities) to limit the scale disparity between advection and
diffusion time scales by restricting the time step ∆tn to be at most rmax∆tpar, with ∆tpar defined by Eq.
(4.10) and rmax a free parameter, see §2.3. In this cases, rmax may be lowered by lowering rmax par in
pluto.ini from its default value (100) to 40 or even less.

Note that although this method is in many cases considerably more efficient than the explicit one,
it is found to be slightly less accurate due to operator splitting. The method is by definition first order
accurate in time, although different values of the ν parameter are found to affect the accuracy. On
the other hand, STS bypasses the severe time constraint posed by second derivative operators in high
resolution simulations.

CHAPTER 4. NON IDEAL EFFECTS 61

Figure 4.1: Length of a super-step (in units of the explicit one, ∆T/∆tpar) as function of the number of sub-steps N using

different values of ν = 10−3 (green, plus sign), ν = 10−2 (red, asterisk - default), ν = 10−1 (purple, square). The upper dotted
lines gives the ν → 0 limit (∆T ∝ N2), whereas the lower one represents the explicit limit (∆T ∝ N). If ∆T/∆tpar = 100, for
example, explicit integration would require 100 steps while super time stepping only ≈ 21 (for ν = 10−2) or 11 (for ν = 10−3)
steps.

4.5 Cooling

PLUTO can include optically thin losses in a fractional step formalism, which preserves 2nd order in
time accuracy if both the advection and source steps are at least 2nd order accurate. The user can select
one among several different cooling functions by properly setting the COOLINGflag during the python
script.

Cooling modules are implemented inside the Src/Cooling directory and require a number of global
variables to be properly initialized inside your Init() function. Some of these global variables are
introduced in order to handle units and dimensions of the problem, i.e. they properly scale the problem
to c.g.s. units (see §4.5.1). In PLUTO dimensionalization is achieved by introducing units for density,
velocity and length; all other units are derived from combinations of these, see §4.5.1 for more detail.

Other variables are introduced to control crucial parameters such as the maximum allowed cooling
rate in each time step, or the cutoff temperature:

• g maxCoolingRate : limit the time step so that the maximum fractional thermal losses cannot
exceed g maxCoolingRate . In general 0 <g maxCoolingRate < 1; the default is 0.1.

• g minCoolingTemp : set the cut-off temperature (in K) below which cooling is artificially set to
0.

Generally speaking, the user can still adopt non-dimensional arbitrary units to assign values for
density, velocity, pressure, magnetic field, etc... The “dimensionalization” of the problem is confined to
the cooling modules.

4.5.1 Units and Dimensions

In general, PLUTO works with non-dimensional, arbitrary units, so that all quantities can be properly
scaled to “reasonable” numbers. Although it is possible, in principle, to work directly in c.g.s. units (i.e.
cm, sec and gr), it is strongly recommended to scale all quantities to non-dimensional units, in order to
avoid occurrences of extremely small (. 10−9) or large numbers (& 1012) that may be misinterpreted by
numerical algorithms.

For simple adiabatic simulations involving no source terms, the dimensionalization process can be
avoided. Dimensionalization is strictly necessary when specific length, time or energy scales are intro-

CHAPTER 4. NON IDEAL EFFECTS 62

Name Numerical Value Physical Meaning

CONST PI 3.14159265358979 π
CONST amu 1.66053886e− 24 atomic mass unit
CONST mp 1.67262171e− 24 proton mass
CONST mn 1.67492728e− 24 neutron mass
CONST me 9.1093826e− 28 electron mass
CONST mH 1.6733e− 24 Hydrogen atom mass
CONST kB 1.3806505e− 16 Boltzmann constant
CONST sigma 5.67051e− 5 Stephan Boltmann constant
CONST NA 6.0221367e23 Avogadro Contant
CONST c 2.99792458e10 Speed of Light
CONST Msun 2.e33 Solar Mass
CONST Rsun 6.96e10 Solar Radius
CONST Mearth 5.9736e27 Earth Mass
CONST Rearth 6.378136e8 Earth Radius
CONST G 6.6726e− 8 Gravitational Constant
CONST h 6.62606876e− 27 Planck Constant
CONST pc 3.0856775807e18 parsec
CONST ly 0.9461e18 light year
CONST au 1.49597892e13 astronomical unit

Table 4.1: Predefined constant in c.g.s. units available in PLUTO .

duced in the problem and they must compare to the dynamical advection scales. For such problems,
PLUTO requires three fundamental units to be specified using the following global variables:

g unitLength (L0) : sets the reference length in cm

g unitVelocity (v0) : sets the reference velocity in cm/s

g unitDensity (ρ0) : sets the reference density in gr/cm3

With these choices, time is be measured in units of t0 = L0/v0, pressure is assigned in units of
p0 = ρ0v

2
0 , while magnetic field (for the MHDmodule only, see §3.2) is given in units of B0 = v0

√
4πρ0,

i.e.:

ρ =
ρcgs
ρ0

, v =
vcgs
v0

, p =
pcgs
ρ0v20

, B =
Bcgs

√

4πρ0v20
(4.11)

Note that, when the relativistic modules are used, v0 must be the speed of light.
PLUTO has several predefined physical and astronomical constants in cgs units which may be used

anywhere in the code, see Table 4.1.
In practice it may be more convenient to introduce the non-dimensional (adiabatic) sound speed

c = ccgs/v0 and obtain the normalized pressure as

p =
ρc2

Γ

which, for v0 = ccgs, reduces to

p =
ρ

Γ

In some circumstances a reference temperature Tref (in Kelvin) may be given. Direct relation between
pressure and density (in “code”, or non-dimensional units) and temperature (in Kelvin) is provided by

T =
p

ρ

µmuv
2
0

kB
(4.12)

CHAPTER 4. NON IDEAL EFFECTS 63

where kB (CONSTkB) is the Boltzmann constant,mu (CONSTamu) is the atomic mass unit, µ is the mean
molecular weight (which depends on the composition of the gas, see §4.5), and p and ρ have already been
scaled to “code” (i.e. non-dimensional) units. The macro KELVIN can be used as the conversion factor
between code units and temperature in Kelvin,

T = KELVIN × µ× p

ρ
(4.13)

It requires a call to the MeanMolecularWeigth() function to compute µ. Thus, if v is a one-dimensional
array of primitive quantities, the typical way to recover temperature in Kelvin is

mu = MeanMolecularWeight(v);
T = v[PRS]/v[RHO] * KELVIN* mu;

From Eq. (4.12) one can define some reference mean molecular weight µ̄ and set

v0 =

√

ΓkBTref
µ̄mu

so that the (adiabatic) speed of sound c =
√

Γp/ρ is identically = 1.
As an example, consider a simple 1-D flow with typical number densities of the order of n ≈ 10 cm−3,

temperatures of the order of T ≈ 104 K (corresponding to typical sound speeds of cs0 ≈ 10 Km/s) and
a magnetic field (if any) of the order of 10 µG. Suppose, also, that the flow is propagating with uniform
speed v ≈ 50 Km/s and the typical scale size of the problem is L ≈ 1 pc ≈ 3.1 · 1018 cm.

• Example 1:
One could, for example, define unit density, velocity and length (respectively) as

ρ0 = n0mp ≈ 1.67 · 10−23 gr/cm3 , v0 = 1 Km/s = 105 cm/s , L0 = 3.1 · 1018 cm

With this choice of units, the piece of code describing the initial condition becomes

g_unitDensity = 1.67e-23; / * reference density (\rho_0) in units of gr/cmˆ 3 * /
g_unitVelocity = 1.e5; / * reference velocity (v_0) in units of cm/sec * /
g_unitLength = 3.1e18; / * reference length (L_0) in cm * /

us[RHO] = 1.0; / * means 1 * [1.67 10ˆ{-23}] gr/cmˆ3 or 10/cmˆ3 * /
us[VX1] = 50.0; / * means 50 * [1 Km/sec] * /
c_sound = 10.0; / * means 10 * [1 Km/sec] * /

/ * -- the following definition of pressure
gives a sound speed of 1 * 1.e6 = 10 Km/sec -- * /

us[PRS] = us[RHO] * c_sound * c_sound/gmm; / * means 100/gmm * [\rho_0 * v_0ˆ2] * /

/ * -- Assign a magnetic field of 10ˆ{-5} Gauss -- * /

us[BX1] = 1.e-5/sqrt(4.0 * CONST_PI* g_unitDensity)/g_unitVelocity;

With this initialization, the sound speed is exactly cs = 10 Km/s.

• Example 2:
Alternatively, one may want to specify a temperature of T = 104 K, and then use the sound speed
as the reference value for the velocity; in this case the previous piece of code should modified to

T = 1.e4; / * initial reference temperature in Kelvin * /
mu_ave = 1.27; / * define some typical molecular weight * /

/ * -- obtain sound speed and set it to
reference velocity (v_0) in units of cm/sec -- * /

g_unitVelocity = sqrt(gmm * CONST_kB* T/(mu_ave * CONST_mp));

g_unitDensity = 1.67e-23; / * reference density (\rho_0) in units of gr/cmˆ3 * /

CHAPTER 4. NON IDEAL EFFECTS 64

g_unitLength = 3.1e18; / * reference length (L_0) in cm * /

us[RHO] = 1.0; / * means 1 * 1.67 10ˆ{-23} gr/cmˆ3 or 10/cmˆ3 * /
us[VX1] = 50.0; / * means 50 * 10 Km/sec * /

/ * -- Assign pressure so that T = 10ˆ4 Kelvin -- * /

us[PRS] = us[RHO]/gmm;
us[BX1] = 1.e-5/sqrt(4.0 * CONST_PI* g_unitDensity)/g_unitVelocity;

Note that time is given in units of sound crossing time, L0/v0.

The definitions of the molecular weight function µ(nk) is necessary when thermal losses are included
(§4.5), and it has the form:

double MeanMolecularWeight(double * V)
{

return 0.5; / * for a completely ionized gas * /
}

Finally, we notice that it is customary, sometimes, to assign magnetic field values in terms of the
plasma β = 2p/B2. Since β is already a dimensionless parameter, one should not worry about proper
dimensionalization, and the line defining the magnetic field must be replaced by

beta = 4.0; / * this is my plasma beta = 2p/Bˆ2 * /
us[BX1] = sqrt(2.0 * us[PRS]/beta); / * in units of v_0\sqrt{4\pi\rho_0} * /

4.5.2 Power Law Cooling

Power law cooling is the most simple form of cooling, where the energy equation becomes:

∂(ρǫ)

∂t
+
[

· · ·
]

adv
= Sρǫ (4.14)

The
[

· · ·
]

adv
part contains advection terms (separately treated in the advection step), and Sρǫ is a source

term of the form:
Sρǫ = −arρ2Tα

There are no new species when this form of cooling is selected. When an ideal equation of state is used,
the source step becomes

dp

dt
= −(Γ− 1)arρ

2−αpα
(

KELVIN × µ
)α

and since density is not affected during this step, integration is done analytically:

pn+1 =

[

(pn)
1−α −∆tC(1− α)

]
1

1−α

for α 6= 1

pn exp (−C∆t) for α = 1

where C = (Γ− 1)arρ
2−α(KELVIN × µ)α is a constant.

The default power law accounts for bremsstrahlung cooling by solving

dpcgs
dtcgs

= −(Γ− 1)
abr

µ2m2
H

ρ2cgs
√

T (K) =⇒ dp

dt
= −Cρ2

√

p

ρ

with p, t and ρ given in code units and

C = abr
Γ− 1

(kBµmH)3/2
ρ0L0

v20

where ρ0, v0 and L0 are the reference density, velocity and length defined in §4.5.1 and abr = 2 · 10−27

in expressed in c.g.s. units. The implementation of this cooling step, with α = 1/2, can be found under
Src/Source Terms/Power Law/cooling.c.

CHAPTER 4. NON IDEAL EFFECTS 65

4.5.3 Tabulated Cooling

The tabulated cooling module provides a way to solve the internal energy equation

dp

dt
= −(Γ− 1)n2Λ(T) , with n =

ρ

mp +me
(4.15)

when the cooling/heating function Λ(T) is not known analytically but rather is available as a table
sampled at discrete (not necessarily equidistant) points, i.e., Λj ≡ Λ(Tj). In order to use this module,
the user must provide a two-column ascii files in the working directory named cooltable.dat of the form

. .

. .

. .
T(j) Lambda(j)

. .

. .

. .

with the temperature expressed in Kelvin and the cooling/heating function Λ in ergs ·cm3/s . An exam-
ple of such file1 can be found in Src/Cooling/Tab/cooltable.dat. As usual, the dimensionalization is done
automatically by the cooling module, once g unitDensity , g unitLength and g unitVelocity
have been defined in Init() .

Alternatively, the tabulated cooling module can be used to provide a user-defined cooling function,

dp

dt
= −Λ , (4.16)

where Λ can be an analytic function of the primitive variables. The explicit dependence of Λ can be given
by i) copying Src/Cooling/Tab/radiat.c into your local working directory and ii) make the appropriate
changes.

4.5.4 Simplified Non-Equilibrium Cooling: SNEq

This module is implemented in the Src/Cooling/SNEq directory and introduces a new variable, with
index FNEUTused to label the fraction of neutrals fn:

fn =
nHI

nH
.

You can assign the fraction of neutrals by setting, in the usual fashion

us[FNEUT] = 0.2; / * for example * /

in your Init() function. The fraction of neutrals obeys the following non-homogeneous advection
equation:

∂fn
∂t

+ v · ∇fn = ne

[

− (cr + ci) fn + cr

]

(4.17)

together with the energy equation

∂(ρǫ)

∂t
+
[

· · ·
]

adv
= nenH

(

k=16
∑

k=1

jk + wi/r

)

(4.18)

where
[

· · ·
]

adv
contains the advection terms in the energy equation and the summation over k accounts

for 16 different line emissions coming from some of the most common elements, k = Ly α, H α, HeI
(584+623), CI (9850 + 9823), CII (156µ), CII (2325Å), NI (5200 Å), NII (6584 + 6548 Å), OI (63µ), OI (6300
+ 6363 Å), OII (3727), MgII (2800), SiII (35µ), SII (6717 + 6727), FeII (25µ), FeII (1.6µ).

1Generated with Cloudy 90.01 for an optically thin plasma and solar abundances, thanks to T. Plewa.

CHAPTER 4. NON IDEAL EFFECTS 66

The coefficient jk in (4.18) has dimensions of erg/sec cm3 and is computed from

jk =
~
2
√
2π√

kBmeme

fkq12
hνk

1 + ne(q21/A21)

where k is the index of a particular transition, fk = nk/nH is the abundance for that particular species.
Here

q12 =
8.6 · 10−6

√
T

Ω12

g1
exp

(

− hνk
kBT

)

, q21 =
8.6 · 10−6

√
T

Ω21

g2

where Ω12 = Ω21 is the collision strength and is tabulated.
In Eq. (4.18) wi/r represents the thermal energy lost by ionization and recombination:

wi/r = ci × 13.6× 1.6 · 10−12fn + cr × 0.67× 1.6 · 10−12(1− fn)
T

11590

where cr and ci are the hydrogen ionization and recombination rate coefficients:

cr =
2.6 · 10−11

√
T

; ci =
1.08 · 10−8

√
T

(13.6)2
exp

(

−157890.0√
T

)

.

The non-homogeneous parts of Eqns (4.17) and (4.18) are solved separately from the advection step
using operator splitting.

4.5.5 Multi-Ion Non-Equilibrium Cooling: MINEq

This module computes the dynamical evolution and ionization state of the plasma using the multi-ion
model of [49] including with 28 ion species namely HI, HeI HeII and the first five ionization stages of
C,N,O,Ne and S. For each ion, PLUTO introduces an additional variable – the fractional abundance of
the ion with respect to the element it belongs:

Xion =
nion
nelem

.

The names of the additional variables for the corresponding species are: HI , HeI , HeII , CI , CII , CIII ,
CIV , CV, NI , NII , NIII , NIV , NV, OI , OII , OIII , OIV , OV, NeI , NeII , NeIII , NeIV , NeV, SI , SII , SIII ,
SIV , SV. Ionized hydrogen is simply 1−XHI. You can assign the fraction of any ion specie by setting, in
the usual fashion

us[HeII] = 0.2; / * for example * /

in your Init() function.
The fractions of all ion species+ can also be automatically set for equilibrium conditions using the

CompEquil() function in Src/Cooling/MINEq/comp equil.c:

double CompEquil (double N, double T, double * v)

where N and T are the plasma number density and temperature respectively and * v is a vector of
primitive variables. The function will return the electron density as output, and * v will contain the
computed ionization fractions (the other variables are not affected). The routine solves the system of
equations for abundances in equilibrium.

Note: The number of ions for C, N, O, Ne and S may be reduced from 5 (default) to a lower number
(> 1) by editing Src/Cooling/MINEq/cooling.h. This may reduce computational time if the expected
temperatures are not large enough to produce high ionization stages (e.g. IV or V if T < 105K).

The elements abundances are set in radiat.c from the Src/Cooling/MINEq/ folder. When using the
MINEq module, the cooling coefficients tables are generated at the beginning of the simulation by the

CHAPTER 4. NON IDEAL EFFECTS 67

routines in Src/Cooling/MINEq/make tables.c. Update or customization of the atomic data can be done by
editing this file.

The ion fractions are integrated through advection equations of the form:

∂Xi

∂t
+ v · ∇Xi = Si , (4.19)

where the source term Si is computed taking into account collisional ionization, radiative and dielec-
tronic recombination, as well as charge-transfer with H and He processes, see [49]. Similarly, a source
term is added to the energy equation:

∂(ρǫ)

∂t
+
[

· · ·
]

adv
= − (Γ− 1)

[

natnelΛ (T,X) + LFF + LI−R

]

, (4.20)

where
[

· · ·
]

adv
contains the advection terms in the energy equation, Λ(T,X) is the radiative cooling

function, LFF and LI−R denote the energy losses in bremsstrahlung and ionization/recombination pro-
cesses respectively, nat and nel are the total atom and electron number densities respectively. In Eq.
(4.20) Λ(T,X) is computed as the sum:

Λ(T,X) =
∑

k

XkLk(nel, T)Bk , (4.21)

where Bk is the fractional abundance of the element, and

Lk =
∑

i

Ni

∑

j<i

Aijhνij , (4.22)

is the total cooling for one ion specie, that is computed and saved to external files by the tables generation
program, then loaded at runtime.

The non-homogeneous parts of Eqns (4.19) and (4.20) are solved separately from the advection step
through the Src/cooling source.c. MINEq uses a dynamically switching integration algorithm for the ion
species and energy designed to maximize the accuracy while keeping the computational cost as low as
possible.

5. Additional Modules

5.1 The ShearingBox Module

−w

x

y z

Lx

+w

Figure 5.1: Schematic representation of the shearing
boundary condition. The computational domain (central
box) is assumed to be surrounded by identical boxes slid-
ing with constant velocity w = |2ALx| with respect to
one another.

The shearingbox provides a local model of a differentially rotating system obtained by expanding
the tidal forces in a reference frame co-rotating with the disk at some fiducial radius R0. The validity
of the approximation (and of the module itself) is restricted to a Cartesian box (considered small with
respect to the global flow) with a steady flow consisting of a linear shear velocity,

vy = −qΩ0x , with q = −d log Ω(R)
d logR

∣

∣

∣

∣

R=R0

(5.1)

where Ω0 is the local constant angular velocity and q is a local measure of the differential rotation (q =
3/2 for a Keplerian profile). The module solves the isothermal or adiabatic MHD equations in a non-
inertial frame so that the momentum and energy equations become

∂(ρv)

∂t
+∇ · (ρvv −BB) +∇pt = ρgs − 2Ω0ẑ × ρv

∂E

∂t
+∇ · [(E + pt)v − (v ·B)B] = ρv · gs ,

(5.2)

where gs = Ω2
0(2qxx̂ − zẑ) is the tidal expansion of the effective gravity while the second term in Eq.

(5.2) represents the Coriolis force. The continuity and induction equations retain the same form as the
original system.

5.1.1 Using the module

The shearingbox module is implemented in Src/MHD/ShearingBox and can be used with the ISOTHERMAL
or IDEAL equations of state. You may enable it by invoking the Python setup script with the --with-sb
option.

Initial conditions are specified, as usual, in the Init() function where in addition you also have
to assign the value of the shear parameter q through the global variable sb q and the angular rotation
velocity Ω0 using the global variable sb Omega. Gravitational terms should be set in the body force.c
function following the examples given in Test Problems/MHD/ShearingBox.

68

CHAPTER 5. ADDITIONAL MODULES 69

While the computational box should be periodic in the azimuthal (y) direction, radial (x) boundary
conditions are determined by ”image” boxes sliding with relative velocity w = |qΩ0Lx| relative to the
computational domain, Fig 5.1. In other words, the boundary conditions at the left/right x-boundaries
are

{

q(x, y, z, t) = q (x± Lx, y ∓ wt, z, t)

vy(x, y, z, t) = vy (x± Lx, y ∓ wt, z, t)± w ,
(5.3)

where q is any other flow quantities except vy. This particular condition is provided by the module
itself and should be selected by assigning shearingbox to the X1 BEGand X1 ENDboundaries in your
pluto.ini. Boundary conditions in the vertical (z) direction may be arbitrarily prescribed.

The ShearingBox module is implemented inside Src/MHD/ShearingBox and works, at present only
with CONSTRAINED TRANSPORT MHD. Unlike previous releases of PLUTO , parallelization can now
be performed in all three spatial dimensions.

5.2 The FARGO Module

The FARGO-MHD module permits larger time steps to be taken in those computations where a (grid-
aligned) supersonic or super-fast dominant background orbital motion exists. A detailed discussion of
the module may be found in [35]. The relevant source files can be found inside Src/Fargo.

The algorithm decomposes the total velocity into an average azimuthal contribution and a residual
term and the MHD or HD equations are solved through a linear transport operator in the direction of
orbital motion and a standard nonlinear solver applied to the MHD equations written in terms of the
residual velocity. The Courant condition is then computed only from the residual velocity, leading to
substantially larger time steps.

The discretization is fully conservative in both angular momentum and total energy. The module
works only the Constrained Transport (CT) method to control divergence-free condition.

5.2.1 Using the Module

The FARGO-MHD module is implemented in Src/Fargo and can be enabled by invoking the python
script with the --with-fargo option. It works in Cartesian, polar and spherical coordinates with
a dimensionally-unsplit time stepping scheme (i.e. with DIMENSIONALSPLITTING set to NO). The
background velocity can be computed by PLUTO in two different ways depending on the value of the
macro FARGOAVERAGEVELOCITYset in Src/Fargo/Fargo.h:

• YES (default): The azimuthal velocity vy or vφ is averaged along the corresponding orbital di-
rection. This operation is performed once every fixed number of time steps (set by the macro
FARGONSTEPAVERAGE, default is 10);

• NO: The velocity is prescribed analytically with the user supplied function FARGO SetVelocity()
(to be implemented in your init.c.

Boundary conditions can be assigned as usual by keeping in mind that the velocity defined in
d->Vc[] is the total velocity and not the residual.

The order of reconstruction used during the linear transport step can be set by changing FARGOORDER
inside Src/Fargo/fargo.h. The default value is 3 (third-order PPM) but it can be lowered to 2 (second-order
MUSCL-Hancok) by editing Src/Fargo/fargo.h.

5.2.2 A Note on Parallelization

The algorithm has been fully parallelized in all coordinate directions with the requirement that the
number of zones per processor in the orbital direction must be larger than the expected transport shift
m.

With a large number of processors (& 2048), the resulting auto-decomposition mode may result in
sub-grids that violate this condition and an error message is issued. To avoid this problem you can
specify the parallel decomposition with the -dec n1 [n2] [n3] command line argument (§1.4.1)

CHAPTER 5. ADDITIONAL MODULES 70

and ensure that not too many processors are used along the φ direction. As an example, suppose you
wish to use 4096 processors but only 8 along the orbital direction (x2). You may specify the domain
decomposition by giving, say, 32, 8 and 16 in the three directions with

mpirun -np 4096 ./pluto -dec 32 8 16

CHAPTER 5. ADDITIONAL MODULES 71

5.3 High-order Finite Difference Schemes

An alternative to the Finite Volume (FV) methodology presented in the previous Chapters and to the
interpolation algorithms described in Chapter 2 is the use of conservative, high-order Finite Difference
(FD) schemes. 3rd and 5th order accurate in space interpolation can be used in PLUTO , invoking setup.py
with the following extension:

˜/MyWorkDir > python $PLUTO_DIR/setup.py --with-fd

The available options in INTERPOLATIONwill now be

• LIMO3 FD: third-order reconstruction of [7];

• WENO3 FD: an improved version of the classical third-order WENO scheme of [16] based on new
weight functions designed to improve accuracy near critical points [52];

• WENOZ FD: improved WENO5 scheme proposed by [6];

• MP5 FD : the monotonicity preserving scheme of [46] based on a fifth-order interface value;

The use of high-order FD schemes is subject to some restrictions:

• The allowed modules are HD and MHD as the special relativistic counterparts are not yet imple-
mented.

• In the case of the MHD module, only cell centered magnetic field collocation is supported, i.e.
DIV CLEANING.

• Temporal integration can be performed only with RK3 (split or unsplit).

• Only Cartesian coordinates are supported (in any number of dimensions).

FD schemes are based on a global Lax-Friedrichs flux splitting and the reconstruction step is per-
formed (for robustness issues) on the local characteristic fields computed by suitable projection of the
positive and negative part of the flux onto the left conservative eigenvectors. For this reason, these
schemes are more CPU intensive than traditional FV schemes (approximately a factor 2÷ 3.5) although
can achieve the same accuracy with much fewer points.

Unlike the FV schemes currently present in PLUTO (possessing an overall 2nd order accuracy),
schemes provided by the conservative FD module are genuinely third- or fifth- order accurate. The
latter, in particular, have shown [34] to outperform traditional second-order TVD schemes in terms of
reduced numerical dissipation and faster convergence rates for problem involving smooth flows. Fig-
ure 5.2 shows, as a qualitative example, a comparison between traditional FV methods (such as Muscl-
Hancock or PPM) and some FD methods on a problem involving circularly polarized Alfven waves
(see Test Problems/MHD/CP Alfven). Although FD schemes can correctly describe discontinuities, the
advantages offered by their employment are more evident in presence of smooth flows.

5.3.1 WENO schemes

The WENO schemes are based on the essentially non-oscillatory (ENO) schemes, originally developed
by [15] using a finite volume formulation and later improved by [43] into a finite difference form. Un-
like TVD schemes that degenerate to first order at smooth extrema, ENO schemes maintain their accu-
racy successfully suppressing spurious oscillations. This is accomplished utilizing the smoothest stencil
among a number of candidates to compute fluxes at the cell faces.

WENO schemes are the natural evolution of ENO schemes, where a weighted average is taken from
all the stencil candidates. Weights are adjusted by local smoothness indicators. Originally developed by
[39] for 1-D finite volume formulation, WENO schemes were then implemented in multi-dimensional
FD by [16], optimizing the original weighing for accuracy.

Currently, the available WENO schemes in PLUTO are the 5th order WENOZ of [6] which improves
over the original one [16] in that it is less dissipative and provide better resolution at critical points at
a very modest additional computational cost. A third order WENO scheme is also provided, namely
WENO+3 of [52]. More details can be found in the paper by Mignone, Tzeferacos & Bodo [34].

CHAPTER 5. ADDITIONAL MODULES 72

Figure 5.2: Long term (numerical) de-
cay of a circularly polarized Alfven wave
on a 2D periodic domain with [120 × 20]
zones. The different curves plot the max-
imum value of Bz as a function of time
and thus give a measure of the intrinsic nu-
merical dissipation. Selected finite volume
schemes employing constrained transport
(CT) are: MUSCL-HANCOCK (MH+CT),
Runge Kutta 2 (RK2+CT) and PPM+CT. Fi-
nite difference schemes employ the GLM
formultation and are, respectively, given by
WENO3, WENOZ and MP5.

5.3.2 LimO3 & MP5

As an alternative to the previously described WENO schemes, LimO3 and MP5 interpolations are also
available. The former is a new and efficient third order limiter function, proposed by [7]. Utilizing
a three point stencil to achieve piecewise-parabolic reconstruction for smooth data, LimO3 preserves
its accuracy at local extrema, avoiding the well known clipping of classical second-order TVD limiters.
Note that this reconstruction is also available in the finite-volume version of the code.

PLUTO ’s MP5 originates from the monotonicity preserving (MP) schemes of [46], which achieve
high-order interface reconstruction by first providing an accurate polynomial interpolation and then
by limiting the resulting value in order to preserve monotonicity near discontinuities and accuracy in
smooth regions. The MP algorithm is better sought on stencils with five or more points in order to
distinguish between local extrema and a genuine O(1) discontinuities.

For an inter-scheme comparison and more information on their implementation with the MHD-GLM
formulation, consult [34].

6. Output and Visualization

In this Chapter we describe the data formats supported by the static grid version of PLUTO and how
they can be read and visualized with some of the most popular visualization packages.

6.1 Output Data Formats

With the static version of PLUTO , data can be dumped to disk in a variety of different formats. The
majority of them is supported on serial as well as parallel systems. The available formats are classified
based on their file extensions:

.dbl: double-precision (8 byte) binary data (serial/parallel);

.flt: single-precision (4 byte) binary data (serial/parallel);

.dbl.h5: double-precision (8 byte) HDF5 data (serial/parallel);

.flt.h5: single-precision (4 byte) HDF5 data (serial/parallel);

.vtk: VTK (legacy) file format using structured or rectilinear grids (serial/parallel);

.tab: tabulated multi-column ascii format (serial only);

.ppm: portable pixmap color images of 2D data slices (serial/parallel);

.png: portable network graphics (bitmap image format that employs lossless data compression)
color images of 2D data slices (serial/parallel).

Output files are named as base.nnnn.ext, where base is either ”data” (when all variables are written
to a single file) or the name of the corresponding variable (when each variable is written to a different
file, see Table 6.1), nnnn is a four-digit zero-padded integer counting the output number and ext is the
corresponding file extension listed above. There’s no distinction between serial or parallel mode.

Base name Variable Single record size

rho Density N1 ×N2 ×N3

prs Pressure N1 ×N2 ×N3

vx1 x1 velocity N1 ×N2 ×N3

vx2 x2 velocity N1 ×N2 ×N3

vx3 x3 velocity N1 ×N2 ×N3

bx1 x1 mag. field N1 ×N2 ×N3

bx2 x2 mag. field N1 ×N2 ×N3

bx3 x3 mag. field N1 ×N2 ×N3

bx1s x1 stag. mag. field (N1 + 1)×N2 ×N3

bx2s x2 stag. mag. field N1 × (N2 + 1)×N3

bx3s x3 stag. mag. field N1 ×N2 × (N3 + 1)

trc first tracer N1 ×N2 ×N3

Table 6.1: Base prefix for multiple data set. The size is in units of 4 (for the flt format) or 8 (for the dbl format) bytes.

For each format, it is possible to dump all or just some of the variables. Additional user-defined
variables may be written as well, §6.2.0.1. The default setting is described separately for each output in
the next subsections and may be changed if necessary, see §6.2.1.

73

CHAPTER 6. OUTPUT AND VISUALIZATION 74

Each format has an independent output frequency and an associated log file (i.e. dbl.out, flt.out, vtk.out
and so forth) keeping track of the dump history. Two additional files, grid.out and sysconf.out, contain
grid and system-related information, respectively.

Finally we point out that restart is possible only using the .dbl or .dbl.h5 data formats.

6.1.1 Binary Output: dbl or flt data formats

Binary data can be dumped to disk at a given time step as i) one single file containing all variables
(by selecting single file in pluto.ini) or ii) as a set of separate individual files for each variable
(multiple files). We recommend the second option for large data sets. The base name is set to
data for a single data file containing all of the fields, or takes the name of the corresponding variable if
multiple sets are preferred, see Table 6.1.

Restart can be performed from double precision binary data files by invoking PLUTO with the
-restart n command line option, where n is the output file number from which to restart. In this
case an additional file (restart.out) will be dumped to disk.

The corresponding log file (dbl.out or flt.out) is a multi-column ascii files of the form:

.

.

.
nout t dt nstep single_file little var1 var2 ...

.

.

where nout , t , dt and nstep are, respectively, the file number, time, time step and integration step at
the time of writing. The next column (single file/multiple files) tells whether a single-file or
multiple-files are expected. The following one (little/big) gives the endianity of the architecture,
whereas the remaining columns list the variable names and their order in this particular format.
Default: The default is to write ALL fields in dbl format, whereas to exclude staggered magnetic field
components (if any) from the flt format.

6.1.2 HDF5 Output: dbl.h5 or flt.h5 data formats

HDF5 output format can be used in the static grid version if PLUTO has been succesfully compiled with
the serial or parallel version of the HDF5 library, see §2.2.2. The file extension is .h5 (and not .hdf5 as
used by PLUTO-Chombo data files, §7.4) and output files are compatible with the Pixie format, a HDF5
filetype that can be directly opened an visualized by different softwares, like VisIt and Paraview.

The conventions used in writing .dbl.h5 or .flt.h5 files are the same ones adopted for the .dbl and .flt
data formats. However, with HDF5, all variables are written to a single file and each one comes along
with a supplementary .xmf text file in XDMF format that describes the content of the corresponding
HDF5 file. This is useful for visualization with VisIt or ParaView, §6.3.3.

Restart can be performed from double precision HDF5 data files by invoking PLUTO with the
-h5restart n command line option (§1.4.1), where n is the output file number from which to restart.
In this case an additional file (restart.out) will be dumped to disk.
Default: The default is to write ALL fields in .dbl.h5 format, whereas to exclude staggered magnetic
field components (if any) from the .flt.h5 format.
Current Limitations: at present HDF5 format does not support writing of supplementary variables.

6.1.3 VTK Output: vtk data format

VTK (from the Visualization ToolKit format) output follows essentially the same conventions used for
the .dbl or .flt outputs. Single or multiple VTK files can be written by specifying either single file or
multiple files in your pluto.ini and data values are always written using single precision with byte
order set to big endian.

The mesh topology uses a rectilinear grid format for CARTESIAN or CYLINDRICAL geometry, and a
structured grid format for POLAR or SPHERICAL geometry. Scalar quantities are saved with the “scalar”
attribute whereas vector fields (velocity and magnetic field) with the “vector” attribute. Furthermore,
both fields and arrays are written with the CELL DATA attribute and grid nodes (or vertices) are used

CHAPTER 6. OUTPUT AND VISUALIZATION 75

to store the mesh1. If a VTK file is written to disk, the log file vtk.out is updated in the same manner as
dbl.out or flt.out.
Default: By default, all variables except staggered magnetic field components (if any) are written.

6.1.4 ASCII Output: tab Data format

The tab format may be used for one dimensional data or relatively small two dimensional arrays in
serial mode only. We warn that this output is not supported in parallel mode. The output consists in
multi-column ascii files named data.nnnn.tab of the form:

.

.

.
x(i) y(j) var1(i,j) var2(i,j) var3(i,j) ...

.

.

.

where the index j changes faster and a blank records separates blocks with different i index.
Default: By default, all variables except staggered magnetic field components (if any) are written.

6.1.5 Graphic Output: ppm and png data formats

PLUTO allows to take two-dimensional slices in the x1x2, x1x3 or x2x3 planes and save the results
as color ppm or png images. The Portable Pixmap (ppm) format is quite inefficient and redundant al-
though easy to write on any platform since it does not require additional libraries. The Portable Network
Graphics (png) is a bitmap image format that employs lossless data compression. It requires libpng to be
installed on your system.

Different images are associated with different variables and can have different sets of attributes de-
fined by the Image structure. An image structure has the following customizable elements:

• slice plane : a label (X12 PLANE, X13 PLANE, X23 PLANE) setting the slicing 2D plane.

• slice coord : a real number specifying the coordinate orthogonal to slice plane .

• max,min : the maximum and minimum values to which the image is scaled to. If max=min au-
toscaling is used;

• logscale : an integer (0 or 1) specifying a linear or logarithmic scale;

• colormap : the coloramp. Available options are “red” (red map) “br” (blue-red), “bw” (black and
white), “blue” (blue), “green” (green).

In 2D the default is always slice plane = X12 PLANEand slice coord = 0 . Image attributes can
be set independently for each variable in the function ChangeDumpVar() in Src/userdef output.c, see
§6.2.1.
Default: By default, only density is written.

6.1.6 The grid.out output file

The grid.out file contains information about the computational grid used during the simulation. It is an
ASCII file starting with a comment-header containing the creation date, dimension and geometry of the
grid:

*** ***
PLUTO 4.0 Grid File
Generated on <date>
#
DIMENSIONS: <DIMENSIONS>
GEOMETRY: <GEOMETRY>
X1: [<x1_beg>, <x1_end>], <nx1> point(s), <ngh> ghosts
X2: [<x2_beg>, <x2_end>], <nx2> point(s), <ngh> ghosts
X3: [<x3_beg>, <x3_end>], <nx3> point(s), <ngh> ghosts
*** ***

1This differs from previous versions of PLUTO where point-centered rather than cell-centered attributes were used.

CHAPTER 6. OUTPUT AND VISUALIZATION 76

The rest of the file is made up of 3 sections, one for each dimension, giving the (interior) number of
point followed by a tabulated multi-column list containing (from left to right) the point number, left and
right cell interfaces:

nx1
. . .
. . .
. . .

<point number> <cell left edge> <cell right edge>
. . .
. . .
. . .

and similarly for the x2 and x3 directions.

6.2 Customizing your output

Output can be customized by editing two functions in the source file Src/userdef output.c in the PLUTO
distribution. We recommend to copy this file into your working directory and modify the default set-
tings, if necessary. Changes can be made by i) introducing new additional variables and ii) altering the
default attributes.

6.2.0.1 Writing Supplementary Variables

New variables can be written to disk in any of the available formats previously described. The number
and names of these extra variables is set in your pluto.ini initialization file under the label “uservar”. The
function ComputeUserVar() (located inside Src/userdef output.c) tells PLUTO how these variables are
computed.

As an example, suppose we want to compute and write temperature (T = p/ρ) and the z component
of vorticity (ω = ∂xvy − ∂yvx). Then one has to set

uservar 2 T vortz

in your pluto.ini under the [Static Grid Output] block. This informs PLUTO that 2 additional
variables named “T” and “vortz” have to be saved. They are computed at each output by editing the
function ComputeUserVar() :

void ComputeUserVar (const Data * d, Grid * grid)
{

int i,j,k;
double *** T, *** vortz;
double *** p, *** rho, *** vx, *** vy;
double * dx, * dy;

T = GetUserVar("T");
vortz = GetUserVar("vortz");

rho = d->Vc[RHO]; / * pointer shortcut to density * /
p = d->Vc[PRS]; / * pointer shortcut to pressure * /
vx = d->Vc[VX1]; / * pointer shortcut to x-velocity * /
vy = d->Vc[VX2]; / * pointer shortcut to y-velocity * /

dx = grid[IDIR].dx; / * shortcut to dx * /
dy = grid[JDIR].dx; / * shortcut to dy * /

DOM_LOOP(k,j,i){
T[k][j][i] = p[k][j][i]/rho[k][j][i];
vortz[k][j][i] = 0.5 * (vy[k][j][i+1] - vy[k][j][i-1])/dx[i]

- 0.5 * (vx[k][j+1][i] - vx[k][j-1][i])/dy[j];
}

}

The DOMLOOP(k,j,i) macro performs a loop on the whole computational domain (boundary ex-
cluded) in order to compute T[k][j][i] and vortz[k][j][i] . Once PLUTO runs, these two vari-
ables will automatically be written in all selected formats (except for the ppm and png formats), by
default. In order to change the default attributes, follow the example in the next subsection.

CHAPTER 6. OUTPUT AND VISUALIZATION 77

6.2.1 Changing Attributes

Defaults attributes (which variables in which output have to be written, image attributes) can be easily
changed through the function ChangeDumpVar() located in the file Src/userdef output.c.

To include/exclude a variable from a certain output type, use SetDumpVar()(var, type, YES/NO) .
Here “var ” is a string containing the name of a variable listed in Table 6.1 or an additional one de-
fined in your pluto.ini. The “type ” argument can take any value among: DBL OUTPUT, FLT OUTPUT,
VTK OUTPUT TAB OUTPUT, PPM OUTPUT, PNG OUTPUT. This is a sketch of how this function may be
used:

void ChangeDumpVar ()
{

Image * image; / * a pointer to an image structure * /

SetDumpVar("bx1", FLT_OUTPUT, NO);
SetDumpVar("prs", PPM_OUTPUT, YES);
SetDumpVar("vortz", PNG_OUTPUT, YES);

image = GET_IMAGE ("rho");
image->slice_plane = X13_PLANE;
image->slice_coord = 1.1;
image->max = image->min = 0.0;
image->logscale = 1;
image->colormap = "red";

}

In this example, the variable “bx1 ” is excluded from the flt output, “prs ” and “vortz ” (defined in the
previous example) are added to the ppm and png outputs, respectively. Furthermore, the default image
attributes of “rho ” (included by default) are changed to represent a cut (in log scale, red colormap) in
the xz plane at the point coordinate y = 1.1 in the y−direction.

Note that the default for dbl should never be changed since restarting from a given file requires ALL
variables being evolved in time.

CHAPTER 6. OUTPUT AND VISUALIZATION 78

6.3 Visualization

PLUTO data files can be read with a variety of commercial and open source packages. In what follows
we describe how PLUTO data files can be read and visualized with IDL2, Gnuplot3, VisIt4 and Par-
aView5. In addition, the new quick visualization tool pyPLUTO has been kindly provided to us by B.
Vaidya and D. Stepanovs and it is described in §6.3.4.

We recall that reading of .dbl or .flt files must be complemented by grid information which is stored
in a separate file (grid.out). On the other hand, VTK and HDF5 files (.xmf / .h5 , .vtk or .hdf5) are “stand-
alones” in the sense that they embed grid information and can be opened alone.

6.3.1 Visualization with IDL

Data written with PLUTO using .dbl, .flt, .h5 or .hdf5 format can be easily read with IDL the PLOAD proce-
dure (located in Tools/IDL/pload.pro) which initializes common block variables shared by other functions
and procedure in the Tools/IDL/ subdirectory. We strongly recommend to add the Tools/IDL to the IDL
search path.

The PLOAD procedure allows to read data from disk by storing arrays into memory or through IDL
file-association for large datasets. A typical IDL session is

IDL> PLOAD,3
IDL> DISPLAY,alog(rho), title=’Density’,/vbar
IDL> DISPLAY,vx1,title=’X-Velocity’,nwin=1

The first call to PLOAD initializes all the common blocks and reads the 3rd data set from disk. The second
line displays the density logarithm and the third line displays (in a new window) the x1 component of
velocity. The display.pro procedure is a general-purpose visualization routine. Consult the available
documentation for more information.

6.3.1.1 The PLOAD procedure

The PLOAD function is a multi-purpose routine than can be used to read grid, time information, geom-
etry and solution data from disk in one of the following format: .dbl, .flt, .dbl.h5, .flt.h5 and .hdf5. By
default, PLOAD tries to read binary data in double precision if dbl.out is present. To select a different
format, a corresponding keyword must be supplied (e.g. /FLOAT, /H5 or /HDF5 or a combination of
them). This procedure must be executed prior to any other function; it initializes the following four
common blocks:

• PLUTOGRID: contains grid information such as the number of points (nx1,nx2,nx3), coordi-
nates (x1,x2,x3) and mesh spacing (dx1, dx2, dx3);

• PLUTOVAR: the number (NVAR) and the names of variables being written for the chosen format.
Variable names follow the same convention adopted in PLUTO , e.g., rho, vx1, vx2, ...,
bx1, bx2, prs, .. and so on;

• PLUTORUN: time stepping information such as output time (t), time step (dt) and total number
of files (nlast).

PLOAD can be used inside a normal IDL script, after it has been invoked at least once (or compiled with
.r pload). A comprehensive list of all keywords can be found in Doc/idl tools.html.

6.3.1.2 General-Purpose IDL Routines

The Tools/IDL provides several other routines for data visualization and analysis. Some of the most
important are briefly described below. See Doc/idl tools.html for more detailed information.

2http://www.exelisvis.com/
3http://www.gnuplot.info
4https://wci.llnl.gov/codes/visit/home.html
5http://www.paraview.org/

CHAPTER 6. OUTPUT AND VISUALIZATION 79

Figure 6.1: An example of visualization in IDL using the display.pro routine.

• COLORBAR: add a color bar to the current graphics window.

• CURL: compute the curl of a two-dimensional vector field.

• DISPLAY: produce nice graphic output for 2-D arrays on screen or eps files. It accepts several key-
words, see the documentation in Doc/IDL/idl tools.html. An example showing density and magnetic
field for the Orszag-Tang MHD vortex is given in Fig (6.1).

• DIV: Compute the divergence of a two-dimensional vector field.

• FIELD LINE: Compute field lines of a two-dimensional vector.

• GET FRAME: Take a snapshot of the current window and produce an image file.

• HDF5LOAD: read the content of an HDF5 file.

• OPLOTBOX: overplot the AMR box layout on the current window.

• POLAR: interpolates a surface array from polar coordinates (r, θ) to Cartesian coordinates (x, y).

• REGRID: Interpolate irregularly-gridded data to a regular grid.

• SHOCKFIND: look for shocks in a two dimensional domain.

• VECFIELD: produce a 2D velocity field plot.

• WRITE VTK: write data in vtk format.

CHAPTER 6. OUTPUT AND VISUALIZATION 80

6.3.2 Data Visualization with Gnuplot

Data can be visualized under Gnuplot using ascii (.tab) or binary data formats (version 4.2 or higher is
recommended).

Ascii Data Files. If you selected the tab output in pluto.ini, you can plot 1D data from, say, your first
output file, by typing

gnuplot> plot "data.0001.tab" u 1:3 # for density
gnuplot> plot "data.0001.tab" u 1:4 # for velocity

In 2-D you can take advantage of the pm3d style using

gnuplot> set pm3d map
gnuplot> splot "data.0001.tab" u 1:2:3 # for density
gnuplot> splot "data.0001.tab" u 1:2:4 # for velocity

Binary Data Files. Starting with Gnuplot 4.2, raw binary files are also supported. If you selected
multiple files in your dbl or flt output(s), you can display the y-velocity (for instance) using

gnuplot> set pm3d map
gnuplot> splot "vx2.0010.dbl" binary array=200x200 forma t="%double"

where array=200x200 means that the underlying array structure has 2002 points. For single datafiles
(single file), you can select the variable to display by skipping the appropriate number of bytes
using the skip() function:

gnuplot> set pm3d map
gnuplot> nvar = 2
gnuplot> splot "data.0010.dbl" binary array=200x200 form at="%lf" skip=(200 * 200* 8* nvar)

In this example, we skip by 200×200 (grid size) × 8 (double precision) × 2 (since vy is stored after ρ and
vx) bytes. Please refer to table 6.1 for grid sizes. The sequential order of variables can be deduced from
the corresponding dbl.out file.

Grid information may be more easily included by taking advantage of the scripts provided with
the code distribution in Tools/Gnuplot. To this end, you need to define the GNUPLOTLIB environment
variable (in your shell) which will be appended to the loadpath of Gnuplot:

> export GNUPLOT_LIB=$PLUTO_DIR/Tools/Gnuplot # use sete nv for tcsh users$

You may then start a Gnuplot session as follows:

gnuplot> load "grid.gpl" # read and store grid information
gnuplot> load "setplmap.gpl" # set the display canvas for pm 3d plot style

The first line invokes the grid.gpl script which will read your grid.out and set variable values such as grid
spacing (dx,dy), domain range (xb,xe and yb, ye) and length (Lx=xe-xb, Ly=ye-yb), number
of points (Nx,Ny). Uniform grid spacing is assumed. The second script, setplmap.gpl, sets a default
environment for viewing binary data files using the pm3d style of Gnuplot. It also provides two conve-
nient macros, @dblform and @fltform , useful for passing grid and data information to splot . You
can change the variable to be (s)plotted by assigning a different value to nvar , which is automatically
initialized to 0 when loading setplmap.gpl. As a first example, consider

gnuplot> splot "rho.0002.dbl" @dblform # display (double p recision) data

This will display density from an individual double-precision dataset. As a second example,

gnuplot> nvar = 4
gnuplot> splot "data.0017.flt" @fltform # display (single precision) data

will display the 5-th variable from the single precision datasets data.0017.flt.
To plot the portion x ∈ [2.2 : 3.2], y ∈ [0 : 1] of the domain using log scale, you can

gnuplot> set logscale cb
gnuplot> splot [2.2:3.2] [0:1] "rho.0004.flt" @fltform
gnuplot> unset colorbox # get rid of the colorbox

CHAPTER 6. OUTPUT AND VISUALIZATION 81

6.3.3 Data Visualization with VisIt or ParaView

PLUTO data written using VTK or HDF5 (both .h5 and .hdf5 files) formats can be easily visualized using
either VisIt or ParaView available at https://wci.llnl.gov/codes/visit/home.html and http://www.paraview.org/,
respectively. VisIt is an open source interactive parallel visualization and graphical analysis tool for
viewing scientific data. ParaView is an open source mutiple-platform application for interactive, scien-
tific visualization.

An example is shown in Fig. 6.2 for both software packages.

Figure 6.2: An example of visualization of an .xmf (.h5) data file using VisIt (left) or ParaView (right).

Visualization of HDF5 files. Both VisiIt and Paraview interpret the cell-centered grid and data con-
tained in the Pixie files as node-centered: as a consequence, the first and the last half cells in every
direction are clipped from the images (e.g. a small sector around φ = 0 is chopped from a periodic polar
plot covering the 2π angle). Therefore, for every .h5 file PLUTO writes also a .xmf text file in XDMF
format that describes the content of the corresponding HDF5 file. The .xmf files can be directly opened
by VisIt and ParaView, so as to provide the correct data centering and avoid the image clipping. Besides,
we noticed that ParaView 3.14 (at least the precompiled binary for MAC OSX 64-bit Intel) crashes when
trying to read the .h5 files, but correctly opens the .xmf files. Older versions of ParaView (down to 3.10)
worked fine. All the variables are read as scalar quantities.

Visualization of VTK files. PLUTO 4.0 writes .vtk files using a cell-centered attribute rather than
point-centered (as in previous versions). Although this has not been found to be a problem for VisIt,
many filters in ParaView (such as streamlines) may require to apply a Cell Data to Point Data
filter.

CHAPTER 6. OUTPUT AND VISUALIZATION 82

6.3.4 Data Visualization with pyPLUTO

Figure 6.3: An example of visualization with the pyPLUTO tool.

Binary data files (.dbl and .flt) can be visualized using the pyPLUTO code developed by Bhargav
Vaidya6 and Denis Stepanovs7. This tool is included in the current code distribution in the directory
Tools/pyPLUTO/ and provides python modules (Python version> 2.7 is recommended) to load, visualize
and analyse data. Additionally, for the purpose of quick check a GUI routine is provided (requires
Python Tkinter).

Details of the Installation and Getting Started can be found in the pyPLUTO.pdf attached with this
code in the Tools/pyPLUTO/doc/latex folder. Alternatively, the html documentation - index.html can be
found in the Tools/pyPLUTO/doc/html folder.

On sucessful installation, the user can load data in the following manner:

> ipython --pylab
In [1]: import pyPLUTO as pp
for loading data.0010.dbl
In [2]: D = pp.pload(10,w_dir=<path to data dir>)
for loading data.0010.flt
In [3]: D = pp.pload(10,w_dir=<path to data dir>, datatype= ’float’)

Here, Dis a pload object that has all the information. For example, D.x1 is the numpy x-array, D.rho
- is the numpy density array, D.vx1 - is the numpy vx1 array and so on. These numpy arrays can be
easily visualised using matplotlib.

In order to use the GUI version for visualizing the data, append $PATHvariable to the bin folder
where the executable GUI pyPLUTO.py exists after the installation of source code (see installation notes
in Tools/pyPLUTO/doc/) and then apply the following commands in the data directory -

> GUI_pyPLUTO.py

or

> GUI_pyPLUTO.py --float

Along with the code, an example folder with some sample .py files are provided for certain test
problems. It is required to run the test problems and obtain the data files, after which the user can run
the sample .py files as follows :

1. To plot 1D density, pressure and velocity for Test Problems/HD/Sod/

> python sod.py

6School of Physics and Astronomy, University of Leeds, Leeds LS29JT. Email: B.Vaidya@leeds.ac.uk
7MPI Astronomy, Heidelberg

CHAPTER 6. OUTPUT AND VISUALIZATION 83

2. To plot 2D density for Test Problems/MHD/Orszag Tang/

> python orszag_tang.py

3. To plot density along with magentic field lines for Test Problems/MHD/Jet

> python jet.py

4. To plot the density of a spherically symetric wind with velocity vectors (not normalised) for
Test Problems/HD/Stellar Wind with VCSM = 0:

> python stellar_wind.py

5. To do a multi plot of density at 3 different times for Test Problems/HD/Rayliegh Taylor/

> python rayleigh_taylor.py

6. To plot density in the r − φ plane with velocity vectors (normalized) and to plot magnetic field in
r − θ plane for Test Problems/MHD/FARGO/Spherical Disk.

> python Sph_Disk.py

7. Adaptive Mesh Refinement (AMR)

PLUTO supplies adaptive mesh refinement (AMR) functionality in 1, 2 and 3 dimesions through the
Chombo library available at https://commons.lbl.gov/display/chombo/. Chombo provides a distributed
infrastructure for parallel calculations over block-structured, adaptively refined grids. For compatibility
reasons, not all the algorithms available with the static grid version of PLUTO have been extended to
the AMR version. PLUTO-Chombo can be used with all the four physics modules (i.e. HD, MHD, RHD,
RMHD) under the following restrictions:

• Cartesian (1, 2 or 3 dimensions) and Cylindrical (2D) coordinates (spherical are underway).

• Only uniform grids, with equal sides (i.e. square or cubic) cells can be used;

• Magnetic fields are evolved using cell-centered formulations (Powell’s eight wave or GLM); con-
strained transport is not yet available.

• Time stepping can be chosen between HANCOCK, CHARACTERISTIC TRACING and RK2 (new in
PLUTO 4.0).

• I/O provided by the Hierarchical Data Format (HDF5) library1, designed to store and organize
large amounts of numerical data.

A detailed presentation of the implementation method together with an extensive numerical test suite
may be found in [29].
The AMR implementation of PLUTO is not compatible, at present, with:

• finite difference schemes;

• the ShearingBox module (§5.1)

• the FARGO module;

• Super-Time-Stepping integration for diffusion terms.

Some of the C functions normally used in the static grid version of PLUTO have been replaced by
C++ codes, in order to interface the structure of PLUTO with the Chombo library. As an example, the
main function main.c has been replaced by amrPluto.cpp.

7.1 Installation

In order to properly install PLUTO-Chombo , you will need (check also Table 1.1):

• C, C++ and Fortran compilers;

• the MPI library (for parallel runs).

• GNU make

• the HDF5 library available at http://www.hdfgroup.org/HDF5/. Chombo has been successfully com-
piled with hdf5-1.6.x and it can be compiled also with version 1.8.x providing the backward com-
patibility flag;

• the Chombo library, available under free registration at https://commons.lbl.gov/display/chombo. We
strongly recommend to download Chombo version 3.1.

1 http://www.hdfgroup.org/HDF5/

84

CHAPTER 7. ADAPTIVE MESH REFINEMENT (AMR) 85

• the Chombo3.1patch.tar provided with the PLUTO distribution, which replaces some of the library
source files.

The following sections give a quick headstart on how these libraries can be built for being used by
PLUTO . Please consult the libraries’ respective documentation for additional information.

7.1.1 Installing HDF5

HDF5 (1.6.x and 1.8.x) libraries should install without major troubles anywhere on your system. Beware
that different libraries must be created for serial or parallel execution. Since in both cases library names
are the same (by default), it is advisable to store them in separate locations. On a single-processor
machine, serial libraries can be built, for example, using

> ./configure --prefix=/usr/local/HDF5-serial
> make
> make check # optional
> make install

This will install the libraries under /usr/local/HDF5-serial/lib . If you do not have root privi-
leges, choose a different location in your home directory (e.g. $PLUTODIR/Lib/HDF5-serial).

Note: Chombo I/O employs the HDF5 1.6.x API. However, HDF5 version 1.8.x can also be used
by adding the --with-default-api-version=v16 flag to configure .
Alternatively, if HDF5 1.8.x is already installed or if you wish to compile HDF5 normally, sim-
ply add the -DH5 USE16 API flag to the HDFINCFLAGSvariable inside your Make.defs.local, see
§7.1.2.

On multiple-processor architectures, parallel libraries can be built by specifying the name of the
mpicc compiler in the CCvariable and invoking configure with the --enable parallel switch,
e.g.,

> CC=mpicc ./configure --prefix=/usr/local/HDF5-parall el --enable-parallel # bash user
> make
> make check # optional
> make install

This will install both shared (dynamic, *.so) and static (*.a) libraries. If you build shared libraries, the
environment variable LD LIBRARY PATH should contain the full path name to your HDF5 library (e.g.
/usr/local/HDF5-serial/lib in the example above). Please make sure to add, for example,

> setenv LD_LIBRARY_PATH /usr/local/HDF5-serial/lib:$L D_LIBRARY_PATH

to your .tcshrc if you’re using the tcsh shell or

> export LD_LIBRARY_PATH="/usr/local/HDF5-serial/lib" :$LD_LIBRARY_PATH

if you’re using bash. If you do not want shared libraries, then add --disable-shared to the configure
command.

7.1.2 Installing and Configuring Chombo

Chombo 3.1 can be downloaded by direct access to the SVN server repository after free registration, see
https://commons.lbl.gov/display/chombo/Chombo+Download+Page for instructions. The Chombo source
code distribution should be (preferably) unpacked under PLUTO/Lib/ and some of the library source files
must be replaced using the Chombo3.1Patch.tar patch-archive provided with the PLUTO distribution.
A typical session is

> # get the 3.1 release of Chombo
> svn --username username co https://anag-repo.lbl.gov/s vn/Chombo/release/3.1 Chombo-3.1
> tar xvf Chombo3.1Patch.tar -C Chombo-3.1/ # apply PLUTO-P atch

CHAPTER 7. ADAPTIVE MESH REFINEMENT (AMR) 86

In order to use Chombo, you may have to build different libraries depending on the chosen compiler,
serial/parallel build, number of dimensions, optimizations, etc... If you intend to run PLUTO-Chombo
for serial or parallel computations in one, two or three dimensions in we suggest to compile all possible
configurations (that is 1, 2 and 3D serial or 1, 2 / 3D parallel). Libraries are automatically named by
Chombo after the chosen configuration.

The default configuration can be set by editing manually Chombo/lib/mk/Make.defs.local where, de-
pending on your local system and configuration, you need to set make variables. To this end:

> cd Chombo-3.1/lib
> make setup # create Make.defs.local from template
> cd mk/

The command ’make setup ’ will create this file from a template that contains instructions for set-
ting make variables that Chombo uses. These variables specify the default configuration to build, what
compiler to use (together with its flags), where the HDF library can be found and so on.

At this point you should edit Make.defs.local. The normal procedure is to define a default configura-
tion, e.g., 2D serial:

Configuration variables
DIM = 2
DEBUG = FALSE
OPT = TRUE
PRECISION = DOUBLE
PROFILE = FALSE
CXX = /usr/bin/g++
FC = /usr/bin/g77
MPI = FALSE
Note: don’t set the MPICXX variable if you don’t have MPI in stalled
MPICXX = mpic++
#OBJMODEL =
#XTRACONFIG =
Optional features
#USE_64 =
#USE_COMPLEX =
#USE_EB =
#USE_CCSE =
USE_HDF = TRUE
HDFINCFLAGS = -I/usr/local/lib/HDF5-serial/include
HDFLIBFLAGS = -L/usr/local/lib/HDF5-serial/lib -lhdf5 - lz
Note: don’t set the HDFMPI * variables if you don’t have parallel HDF installed
HDFMPIINCFLAGS= -I/usr/local/lib/HDF5-parallel/inclu de
HDFMPILIBFLAGS= -L/usr/local/lib/HDF5-parallel/lib -l hdf5 -lz

Defaults are used for the remaining field beginning with a ’#’.
Libraries can now be built under Chombo-3.1/lib, with

> make lib

Do not try make all since it won’t work after the Chombo patch file has been unpacked.
Alternative configurations can be made from the default one by specifying the configuration vari-

ables explicitly on the make command line. For example:

> make DIM=3 MPI=TRUE lib

will build the parallel version of the 3D library. Additional information may be found in the Chombo/README
file and by consulting the library documentation.

7.2 Configuring PLUTO-Chombo

In order to configure PLUTO with Chombo, you must start the Python script with the --with-chombo
option (Python assumes that Chombo libraries has been built under PLUTO/Lib/Chombo):

˜/work> python $PLUTO_DIR/setup.py --with-chombo

This will use the default library configuration (2D serial in the example above).
To use a configuration different from the default one, enter the make configuration variables em-

ployed when building the library, e.g.:

CHAPTER 7. ADAPTIVE MESH REFINEMENT (AMR) 87

˜/work> python $PLUTO_DIR/setup.py --with-chombo: MPI=T RUE

Note that the number of dimensions (DIM) is specified during the Python script and should NOT be
given as a command line argument.

The setup proceeds normally as in the static grid case by choosing Setup problem from the Python
script to change/configure your test problem. The makefile is then automatically created by the Python
script by dumping Chombo makefile variables into the file make.vars, part of your local working direc-
tory. Although system dependencies have already been created during the Chombo compilation stage,
the Change makefile option from the Python menu is still used to specify the name and flags of the
C compiler used to compile PLUTO source files. This step is achieved as usual, by selecting a suitable
.defs file from the Config/ directory, see §2.2. Beware that, during this step, additional variables such
as PARALLEL, USEHDF5, etc...(normally used in the static grid version) have no effect since Chombo
has its own independent parallelization strategy and I/O. Fortran and C++ compilers are the same ones
used to build the library.

Initial and boundary conditions are coded in the usual way and pluto.ini is still read at runtime, see
next section.

7.2.1 Header File definitions.h

The header file definitions.h contains the same switches already illustrated in §2.1 and few new ones that
described in the following.

7.2.2 AMR EN SWITCH

By turning this switch to YES, AMR operations such as projection, coarse-to-fine prolongation and re-
striction are performed on the conserved entropy rather than on the total energy density. This has the
advantage of preserving entropy and pressure positivity in those situations where kinetic and/or mag-
netic energies are the dominant contributions to the total energy density. Using this switch, however,
total energy will not be conserved at a fine/coarse interface.

7.2.3 The pluto.ini initialization file

The pluto.ini initialization file described in §2.3 still retains its functionality as in the static grid version of
the code.

The [Grid] block is used to specify the base grid, corresponding to level 0. Only a single uniform
patch per dimension should be specified. Also, the domain size and number of zones for each direction
must be such that equal-sized zones are created (i.e. squares in 2D and cubes in 3D).

The [Chombo Refinement] and [Chombo HDF5 output] blocks can be used to control the refinement cri-
teria and HDF5 output, respectively. The [Static Grid output] block is completely ignored with PLUTO-
Chombo .

The two new blocks take the form:

...

[Chombo Refinement]

Levels 4
Ref_ratio 2 2 2 2 2
Regrid_interval 2 2 2 2
Refine_thresh 0.3
Tag_buffer_size 3
Block_factor 8
Max_grid_size 64
Fill_ratio 0.8

...

[Chombo HDF5 output]

Checkpoint_interval -1.0 0
Plot_interval 1.0 0

CHAPTER 7. ADAPTIVE MESH REFINEMENT (AMR) 88

7.2.3.1 The [Chombo Refinement] Block

This block sets all the relevant parameters for refinement:

• Levels (integer)
set the finest allowable refinement level, starting from the base grid (level 0) defined by the [Grid]
block. 0 means there will be no refinement.

• Ref ratio (integer) (integer) (...)
set the refinement ratios between all levels. First number is ratio between levels 0 and 1, second is
between levels 1 and 2, etc. There must be at least Levels+1 elements or an error will result.

• Regrid interval (integer) (integer) (...)
set the number of timesteps to compute between regridding. A negative value means there will be
no regridding. There must be at least Levels elements or an error will result.

• Refine thresh (double)
set the threshold value of the functional χr (see §7.2.4) above which cells are tagged for refinement
during the grid generation process. When χr > Refine thresh, the cell is tagged for refinement
to a finer level.

• Tag buffer size (integer)
set the amount by which to grow tags (as a safety factor) before passing to MeshRefine.

• Block factor (integer)
set the number of times that grids will be coarsenable by a factor of 2. A higher number produces
”blockier” grids.

• Max grid size (integer)
set the largest allowable size of a grid in any direction. Any boxes larger than that will be split up
to satisfy this constraint.

• Fill ratio (double)
a real number between 0 and 1 used to set the efficiency of the grid generation process. Lower
number means that more extra cells which are not tagged for refinement wind up being refined
along with tagged cells. The tradeoff is that higher fill ratios lead to more complicated grids,
and the extra coarse-fine interface work may outweigh the savings due to the reduced number of
fine-level cells.

7.2.3.2 The [Chombo HDF5 output] Block

Similarly to the [Static Grid Output], this block controls how often restart and plot files are dumped to
disk:

• Checkpoint interval (double) (integer)
set the output frequency in time (double) and/or in number of timesteps (integer) between writing
checkpoint (restart) files. Negative number means that checkpoint files are never written, 0 means
that checkpoint files are written before the initial timestep and after the final one.

• Plot interval (double) (integer)
set the output frequency in time (double) and/or number of timesteps (integer) between writing
plotfiles. Negative number means that plotfiles are never written, 0 means that plotfiles are written
before the initial timestep and after the final one.

Output files are stored using the HDF5 file format and numbered as data.nnnn.hdf5 where n is a zero-
padded, sequentially increasing integer (as for the static grid output, §6.1). Data files contain primitive
variables where checkpoint files contain conservative variables.

CHAPTER 7. ADAPTIVE MESH REFINEMENT (AMR) 89

7.2.4 Controlling Refinement

Zones are tagged for refinement whenever a prescribed function χ(U) of the conserved variables and
of its derivatives exceeds the threshold value assigned to Refine thresh in your pluto.ini. Generally
speaking, the refinement criterion may be problem-dependent thus requiring the user to provide an
appropriate definition of χ(U).

A standard criterion based on the second derivative error norm [21] is implemented in the function
computeRefGradient() in the source file Src/Chombo/TagCells.cpp. The test function adopted for
this purpose is

χ(U) =

√

√

√

√

√

∑

d |∆d,+ 1

2

U −∆d,− 1

2

U |2
∑

d

(

|∆d,+ 1

2

U |+ |∆d,− 1

2

U |+ ǫUd,ref

)2
(7.1)

where U ∈ U is a conserved variables (total energy density is used by default), ∆d,± 1

2

U are the undi-

vided forward and backward differences in the direction d, e.g., ∆x,± 1

2

U = ±(Ui±1−Ui) (see also section

4.1 in [29]). The last term appearing in the denominator, Ud,ref , prevents regions of small ripples from
being refined and it is defined by

Ux,ref = |Ui+1|+ 2|Ui|+ |Ui−1| (7.2)

with ǫ = 0.01. Similar expressions hold when d = y or d = z.

7.3 Running PLUTO-Chombo

Once PLUTO-Chombo has been compiled and the executable pluto has been created, PLUTO runs in
the same way, i.e.

˜/MyWorkDir> ./pluto [flags]

where the supported command line options are given in Table 1.3 in §1.4. Note that -restart must be
followed by the restart (checkpoint) file number. An error will occur otherwise.

Parallel runs proceeds in the usual way, e.g.,

˜/MyWorkDir> mpirun -np 8 ./pluto [flags]

Note that when running in parallel, each processor redirects the output on a separate file pout.n (instead
of pluto.log) where n=0...Np-1 and Np is the total number of processors. However, pout.0 also contains
additional information regarding the chosen configuration.

7.4 Reading and Visualizing HDF5 Files

HDF5 is a data model, library, and file format for storing and managing large amounts of data. It
supports an unlimited variety of datatypes and is designed for flexible and efficient I/O.

HDF5 data can be visualized by a number of commercial or open source packages. At present, we
have successfully opened and displayed Chombo data files with IDL2, VisIt3 and ParaView4. A compre-
hensive list of application software using HDF5 may be found at at http://www.hdfgroup.org/tools5app.html.
A set of utilities for manipulating, visualizing and converting HDF5 data files is provided by H5utils, a
set of utilities available at http://www.hdfgroup.org/products/hdf5 tools/. H5utils offers a simple tool for
batch visualization as PNG images and also includes programs to convert HDF5 datasets into the for-
mats required by other free visualization software (e.g. plain text, Vis5d and VTK).

In what follows we describe some of the routines provided with PLUTO-Chombo for viewing and
analyzing HDF5 data using the IDL programming language.

2http://www.exelisvis.com/
3https://wci.llnl.gov/codes/visit/home.html
4http://www.paraview.org/

7.4.1 Visualization with IDL

PLUTO-Chombo comes with a set of visualization routines for the IDL programming language. For
more information consult idl tools.html.

The procedure HDF5LOAD (located in /Tools/IDL/hdf5load.pro) can read a HDF5 data file and store its
content on the usual set of variables used during a typical IDL session. HDF5LOAD is directly called
from PLOAD (§6.3.1) when the latter is invoked with the /HDF5 keyword. For instance, in order to read
data.0001.hdf5 at the equivalent resolution provided by the 4th refinement level, you need

IDL> pload, /hdf5,2,level=4 # will load data.0002.hdf5, re f level = 4

As an example, in what follows we load and visualize three density maps of the relativistic Kelvin-
Helmholtz test problem, available in the current release (Test Prob/RMHD/KH). The simulation was per-
formed with six levels of refinement, and we consider the fifth output file, data.0005.hdf5. We load the
data set with

IDL> pload, /hdf5, 5, level=6 # will load data.0005.2d.hdf5 , ref level = 6

and visualize with

IDL> loadct,6
IDL> display, x1=x1,x2=x2, rho, imax=1.1, imin=0.65
IDL> oplotbox, ctab=3

The last command (oplotx) overplots the levels of refinement, utilizing the color table that c table speci-
fies (in our case 3). The resulting image is seen in the lower part of Fig. 7.1

It may occur that the dataset one wishes to load exceeds the available memory. In that case, it is
useful to load only a portion of it. This can be accomplished by specifying in the loading process the
patch of the domain that one wishes to display. This is done with the x1range , x2range and x3range
keywords. For example

IDL> pload, /hdf5, 5,lev=6, x1range=[0.25,0.75], x2range =[0.75,1.25]
will load data.0005.2d.hdf5, ref level = 6
but only inside the region x in [0.25,0.75], y in [0.75,1.25]

IDL> display, x1=x1,x2=x2, rho, nwin=1, imax=1.1,imin=0. 65
IDL> oplotbox, ctab=3

The resulting density map is displayed on the upper right part of Fig. 7.1. This is a useful way to
effectively zoom in the region of interest without allocating too much memory on loading the whole
dataset (see top left of Fig. 7.1):

IDL> pload, /hdf5, 5, lev=6, xrange=[0.35,0.45], yrange=[0.9, 1.1]
IDL> display, x1=x1, x2=x2, rho, ims=2, nwin=2, imax=1.1, i min=0.65
IDL> oplotbox, c_table=3

90

Figure 7.1: Density maps of the relativistic Kelvin-Helmholtz test problem, at the end of integration. The large scale view is
on the background/lower part, whereas the thick black boxes denote the zoomed in area of the upper right and upper left panels
consecutively. In all panels the refinement levels are displayed, utilizing the oplotbox routine. The close-ups are produced via
partially loading selected regions of the entire dataset (see text), considerably reducing memory requirements.

91

Acknowledgements

Several people have contributed through valuable suggestions and bug reports to the improvement of
the code in several aspects. In particular, we wish to thank

• S. Orlando, M. Guarrasi and the group in Palermo (Italy) for valuable suggestions during the
development of the thermal conduction module;

• S. Brinkmann, M. Flock for insightful comments and ideas that contributed to the development of
some of the new features introduced in PLUTO 3;

• M.Flock, M. Stute and S. Kolb for testing and strongly supporting the development of the FARGO-
MHD scheme;

• J. Mackey and D. Meyer for pointing out and motivating a careful revision of interpolation on
non-cartesian geometries;

• B. Vaidya for the development of the pyPLUTO visualization tool.

92

A. Equations in Different Geometries

In this section we give the explicit form of the MHD and RMHD equations written in different systems of
coordinates. Non-ideal terms such as viscosity, resistivity and thermal conduction are not included here.
The discretizations used in the Src/MHD/rhs.c and Src/RMHD/rhs.c strictly follow these form. Equations
for the non-magnetized version (HD and RHD) are obtained by setting the magnetic field vector B = 0.

A.1 MHD Equations

A.1.1 Cartesian Coordinates

In Cartesian coordinates (x, y, z), the conservative ideal MHD Equations (3.7) are discretized using the
following divergence form

∂ρ

∂t
+∇ · (ρv) = 0

∂mx

∂t
+∇ · (mxv −BxB) +

∂pt
∂x

= ρ

(

gx − ∂Φ

∂x

)

∂my

∂t
+∇ · (myv −ByB) +

∂pt
∂y

= ρ

(

gy −
∂Φ

∂y

)

∂mz

∂t
+∇ · (mzv −BzB) +

∂pt
∂z

= ρ

(

gz −
∂Φ

∂z

)

∂

∂t
(E + ρΦ) +∇ ·

[

(E + pt + ρΦ)v −B (v ·B)
]

= ρv · g

∂Bx

∂t
+
∂Ez
∂y

− ∂Ey
∂z

= 0

∂By

∂t
+
∂Ex
∂z

− ∂Ez
∂x

= 0

∂Bz

∂t
+
∂Ey
∂x

− ∂Ex
∂y

= 0

(A.1)

where v = (vx, vy, vz) and B = (Bx, By, Bz) are the velocity and magnetic field vectors, (Ex, Ey, Ez)
are the components of the electromotive force E = −v × B, g is the body force vector and Φ is the
gravitational potential.

93

A.1.2 Polar Coordinates

In polar cylindrical coordinates (R,φ, z), the conservative ideal MHD Equations (3.7) are discretized
using the following divergence form

∂ρ

∂t
+∇ · (ρv) = 0

∂mR

∂t
+∇ · (mRv −BRB) +

∂pt
∂R

= ρ

(

gR − ∂Φ

∂R

)

+
ρv2φ −B2

φ

R

∂mφ

∂t
+∇R · (mφv −BφB) +

1

R

∂pt
∂φ

= ρ

(

gφ − 1

R

∂Φ

∂φ

)

∂mz

∂t
+∇ · (mzv −BzB) +

∂pt
∂z

= ρ

(

gz −
∂Φ

∂z

)

∂

∂t
(E + ρΦ) +∇ ·

[

(E + pt + ρΦ)v −B (v ·B)
]

= ρv · g

∂BR

∂t
+

1

R

∂Ez
∂φ

− ∂Eφ
∂z

= 0

∂Bφ

∂t
+
∂ER
∂z

− ∂Ez
∂R

= 0

∂Bz

∂t
+

1

R

∂(REφ)
∂R

− 1

R

∂ER
∂φ

= 0 ,

(A.2)

Note that curvature terms are present in the radial component while the azimuthal component is dis-
cretized in angular momentum conserving form. The corresponding divergence operators are

∇ · F =
1

R

∂(RFR)

∂R
+

1

R

∂Fφ

∂φ
+
∂Fz

∂z
,

∇R · F =
1

R2

∂(R2FR)

∂R
+

1

R

∂Fφ

∂φ
+
∂Fz

∂z

(A.3)

In the previous equations v = (vR, vφ, vz) and B = (BR, Bφ, Bz) are the velocity and magnetic field
vectors, (ER, Eφ, Ez) are the components of the electromotive force E = −v×B, g is the body force vector
and Φ is the gravitational potential.

94

A.1.3 Spherical Coordinates

In spherical coordinates (r, θ, φ) the ideal MHD equations (3.7) are discretized using the following di-
vergence form

∂ρ

∂t
+∇ · (ρv) = 0

∂mr

∂t
+∇ · (mrv −BrB) +

∂pt
∂r

= ρ

(

gr −
∂Φ

∂r

)

+
ρv2θ −B2

θ

r
+
ρv2φ −B2

φ

r

∂mθ

∂t
+∇ · (mθv −BθB) +

1

r

∂pt
∂θ

= ρ

(

gθ −
1

r

∂Φ

∂θ

)

− ρvθvr −BθBr

r
+ cot θ

ρv2φ −B2
φ

r

∂mφ

∂t
+∇r · (mφv −BφB) +

1

r sin θ

∂pt
∂φ

= ρ

(

gφ − 1

r sin θ

∂Φ

∂φ

)

∂

∂t
(E + ρΦ) +∇ ·

[

(E + pt + ρΦ)v −B (v ·B)
]

= ρv · g

∂Br

∂t
+

1

r sin θ

∂(sin θEφ)
∂θ

− 1

r sin θ

∂Eθ
∂φ

= 0

∂Bθ

∂t
+

1

r sin θ

∂Er
∂φ

− 1

r

∂(rEφ)
∂r

= 0

∂Bφ

∂t
+

1

r

∂(rEθ)
∂r

− 1

r

∂Er
∂θ

= 0

(A.4)
Note that curvature terms are present in the radial and meridional components while the azimuthal
component is discretized in angular momentum conserving form. The corresponding divergence oper-
ators are

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ

∂φ

∇r · F =
1

r3
∂(r3Fr)

∂r
+

1

r sin2 θ

∂(sin2 θFθ)

∂θ
+

1

r sin θ

∂Fφ

∂φ

(A.5)

In the previous equations v = (vr, vθ, vφ) and B = (Br, Bθ, Bφ) are the velocity and magnetic field
vectors, (Er, Eθ, Eφ) are the components of the electromotive force E = −v×B, g is the body force vector
and Φ is the gravitational potential.

95

A.2 (Sperical) Relativistic MHD Equations

A.2.1 Cartesian Coordinates

In Cartesian coordinates (x, y, z), the relativistic MHD equations (3.14) take the form

∂D

∂t
+∇ · (Dv) = 0

∂mx

∂t
+∇ ·

[

(w + b2)vxv − bxb
]

+
∂pt
∂x

= ρgx

∂my

∂t
+∇ ·

[

(w + b2)vyv − byb
]

+
∂pt
∂y

= ρgy

∂mz

∂t
+∇ ·

[

(w + b2)vzv − bzb
]

+
∂pt
∂z

= ρgz

∂E

∂t
+∇ · (m−Dv) = Dv · g

∂Bx

∂t
+
∂Ez
∂y

− ∂Ey
∂z

= 0

∂By

∂t
+
∂Ex
∂z

− ∂Ez
∂x

= 0

∂Bz

∂t
+
∂Ey
∂x

− ∂Ex
∂y

= 0

(A.6)

where D = γρ is the lab density, m = (w + b2)v − γ(v · B)b is the momentum density, w is the gas
enthalpy, b2 = B2/γ2 + (v ·B)2, v = (vx, vy, vz) is the velocity, B = (Bx, By, Bz) is the magnetic field
in the lab frame, b = B/γ + γ(v · B)v is the covariant field, (Ex, Ey, Ez) are the components of the
electromotive force E = −v ×B and g is the body force vector.

A.2.2 Polar Coordinates

In polar cylindrical coordinates (R,φ, z), the RMHD Equations (3.14) are discretized using the following
form

∂D

∂t
+∇ · (Dv) = 0

∂mR

∂t
+∇ ·

[

(w + b2)vRv − bRb
]

+
∂pt
∂R

= ρgR +
mφvφ
R

−
(

Bφ

γ2
+ (v ·B)vφ

)

Bφ

R

∂mφ

∂t
+∇R ·

[

(w + b2)vφv − bφb
]

+
1

R

∂pt
∂φ

= ρgφ

∂mz

∂t
+∇ ·

[

(w + b2)vzv − bzb
]

+
∂pt
∂z

= ρgz

∂E

∂t
+∇ · (m−Dv) = Dv · g

∂BR

∂t
+

1

R

∂Ez
∂φ

− ∂Eφ
∂z

= 0

∂Bφ

∂t
+
∂ER
∂z

− ∂Ez
∂R

= 0

∂Bz

∂t
+

1

R

∂(REφ)
∂R

− 1

R

∂ER
∂φ

= 0 ,

(A.7)

96

Note that curvature terms are present in the radial component while the azimuthal component is dis-
cretized in angular momentum conserving form. The corresponding divergence operators are

∇ · F =
1

R

∂(RFR)

∂R
+

1

R

∂Fφ

∂φ
+
∂Fz

∂z
,

∇R · F =
1

R2

∂(R2FR)

∂R
+

1

R

∂Fφ

∂φ
+
∂Fz

∂z

(A.8)

In the previous equations v = (vR, vφ, vz) and B = (BR, Bφ, Bz) are the velocity and magnetic field
vectors, (ER, Eφ, Ez) are the components of the electromotive force E = −v×B, g is the body force vector
and Φ is the gravitational potential.

A.2.3 Spherical Coordinates

In spherical coordinates (r, θ, φ) the RMHD equations (3.14) are discretized using the following diver-
gence form

∂D

∂t
+∇ · (Dv) = 0

∂mr

∂t
+∇ ·

[

(w + b2)vrv − brb
]

+
∂pt
∂r

= ρgr +
mθvθ +mφvφ

r
+

−
(

Bθ

γ2
+ (v ·B)vθ

)

Bθ

r
−
(

Bφ

γ2
+ (v ·B)vφ

)

Bφ

r

∂mθ

∂t
+∇ ·

[

(w + b2)vθv − bθb
]

+
1

r

∂pt
∂θ

= ρgθ −
mθvr − cot θmφvφ

r

+

(

Bθ

γ2
+ (v ·B)vθ

)

Br

r
− cot θ

(

Bφ

γ2
+ (v ·B)vφ

)

Bφ

r

∂mφ

∂t
+∇r ·

[

(w + b2)vφv − bφb
]

+
1

r sin θ

∂pt
∂φ

= ρgφ

∂E

∂t
+∇ · (m−Dv) = Dv · g

∂Br

∂t
+

1

r sin θ

∂(sin θEφ)
∂θ

− 1

r sin θ

∂Eθ
∂φ

= 0

∂Bθ

∂t
+

1

r sin θ

∂Er
∂φ

− 1

r

∂(rEφ)
∂r

= 0

∂Bφ

∂t
+

1

r

∂(rEθ)
∂r

− 1

r

∂Er
∂θ

= 0

(A.9)
Note that curvature terms are present in the radial and meridional components while the azimuthal
component is discretized in angular momentum conserving form. The corresponding divergence oper-
ators are

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ

∂φ

∇r · F =
1

r3
∂(r3Fr)

∂r
+

1

r sin2 θ

∂(sin2 θFθ)

∂θ
+

1

r sin θ

∂Fφ

∂φ

(A.10)

97

Bibliography

[1] Alexiades, V., Amiez, A., & Gremaud E.-A. 1996, Com. Num. Meth. Eng., 12, 31

[2] Balbus, S. A. 1986, ApJ, 304, 787

[3] Balsara, D. S. & Spicer, S. D. 1999, J. Comput. Phys., 149, 270

[4] Balsara, D. S., Tilley, D. A., & Howk, J. C. 2008, MNRAS, 386, 627

[5] Beckers, J.M. 1992, SIAM J. Numer. Anal. 29, 701-713

[6] Borges R., Carmona M., Costa B., Don W.S. 2008, J. Comput. Phys. 227 3191-3211.

[7] Cada P.& Torrilhon M. 2009, J. Comput. Phys. 228, 4118.

[8] Colella, P. & Woodward, P. R. 1984, J. Comput. Phys., 54, 174

[9] Colella, P. 1985, SIAM J. Sci. Stat. Comput. 6, 104-117.

[10] Colella, P. 1990, J. Comput. Phys., 87, 171

[11] Cowie, L. L. & McKee, C. F. 1977, APJ, 211, 135

[12] Courant, R., Friedrichs, K. O. & Lewy, H. 1928, Math. Ann., 100, 32

[13] Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer T., and Wesenberg, M. 2002, J. Comput.
Phys., 175, 645

[14] Gardiner, T. A., & Stone, J. M. 2005, J. Comp. Phys., 205, 509

[15] Harten A., Engquist B., Osher S., Chakravarthy S. 1987, J. Comput. Phys. 71, 231

[16] Jiang, G. & Shu, C.-W. 1996, J. Comput. Phys. 126, 202

[17] Jiang, G. & Wu, C.-C. 1999, J. Comput. Phys. 150, 561

[18] Landau, L. D., & Lifshitz, E. M. 1987, Fluid Mechanics, 2nd edition, Pergamon Press, Oxford .

[19] Liou, M.-S. 1996, J. Comp. Phys., 129, 364

[20] Londrillo, P., & Del Zanna, L., 2004, J. Comp. Phys, 195, 17

[21] Löhner, R. 1987, Computer Methods in Applied Mechanics and Engineering, 61, 323

[22] Kley, W. 1998, A&A, 338, L37

[23] Masset, F. 2000, A&A, 141, 165

[24] Martı́, J. M. & Müller, E. 1996, J. Comput. Phys., 123, 1

[25] Mignone, A., & Bodo, G. 2005, MNRAS, 364, 126

[26] Mignone, A., Plewa, T., & Bodo, G. 2005, Astrophysical Journal Supplement, 160, 199

98

[27] Mignone, A. 2007, J. Comp. Phys.,

[28] Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A. 2007,
Astrophysical Journal Supplement, 170, 228

[29] Mignone, A., Zanni, C., Tzeferacos, P., van Straalen, B., Colella, P., and Bodo, G., 2012, Astrophysi-
cal Journal Supplement, 198, 7

[30] Mignone, A., Flock, M., Stute, M., Kolb, S. M., & Muscianisi, G. 2012, A&A, 545, A152

[31] Mignone, A., & McKinney, J. C. 2007, MNRAS, 378, 1118

[32] Mignone, A., Ugliano, M., & Bodo, G. 2009, MNRAS, 393, 1141

[33] Mignone, A., & Tzeferacos, P. 2010, Journal of Computational Physics, 229, 2117

[34] Mignone, A., Tzeferacos, P., Bodo, G. 2010, Journal of Computational Physics, 229, 5896

[35] Mignone, A., Flock, M., Stute, M., Kolb, S.M. and Muscianisi, G. 2012, Astronomy & Astrophysics,
in press

[36] Miyoshi, T., & Kusano, K. 2005, Journal of Computational Physics, 208, 315

[37] Orlando, S., Bocchino, F., Reale, F., Peres, G., & Pagano, P. 2008, ApJ, 678, 274

[38] Kenneth G. Powell, NASA CR-194902 ICASE Report No. 94-24, April 1994, pp. 15.

[39] Liu X.-D., Osher S., Chan T. 1994, J. Comput. Phys. 115, 200

[40] Powell, K. G., Roe, P.L., Linde, T., Gombosi, T.I. & De Zeeuw, D.L 1999, Journal of Computational
Physics, 154,284

[41] P. L. Roe. 1981, Journal of Computational Physics, 43:357-372, 1981.

[42] Saltzman, J. 1994, J. Comp. Phys., 115, 153

[43] Shu C.-W., Osher S. 1989, J. Comput. Phys. 83, 32

[44] Spitzer, L. 1962, Physics of fully ionized gases (New York: Interscience, 1962)

[45] Strang, G., 1968, SIAM J. Num. Anal., 5, 506

[46] Suresh A., Huynh H.T., 1997, J. Comput. Phys. 136, 83-99

[47] Synge, J. L. 1957, The relativistic Gas, North-Holland Publishing Company

[48] Taub, A. H. 1948, Physical Review, 74, 328

[49] Teşileanu, O., Mignone, A.,& Massaglia, S. 2008, A & A, 488, 429

[50] Toro, E. F. 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag,
Berlin

[51] B. van Leer 1979, J. Comput. Phys. 32, 101-136

[52] Yamaleev, N.K. & Carpenter, M.H. 2009, J. Comput. Phys. 228, 3025-3047

[53] L. Del Zanna & N. Bucciantini 2002, A & A, 390, 1177

[54] Del Zanna, L., Bucciantini, N., & Londrillo, P. 2003, Astronomy & Astrophysics, 400, 397

99

	Quick Start
	Downloading and unpacking PLUTO
	Running a simple shock-tube problem
	Running the Orszag-Tang MHD vortex test
	Setting up your own test problem
	Supplied test problems
	Migrating from PLUTO 3 to PLUTO 4

	Introduction
	System Requirements
	Directory Structure
	Configuring PLUTO
	Compiling & Running the Code
	Command line options

	Modifying the Distribution Source Files

	Problem Setup
	STEP # 1: header file definitions.h
	PHYSICS
	DIMENSIONS & COMPONENTS
	GEOMETRY
	BODY_FORCE
	COOLING
	INTERPOLATION
	TIME_EVOLUTION
	DIMENSIONAL_SPLITTING
	NTRACER
	USER_DEF_PARAMETERS
	Additional Switches

	STEP # 2: makefile creation
	MPI Library (Parallel) Support
	HDF5 Library Support
	PNG Library Support
	Including Additional Files: local_make

	STEP # 3: The initialization file pluto.ini
	The [Grid] block
	The [Chombo Refinement] Block
	The [Time] Block
	The [Solver] Block
	The [Boundary] Block
	The [Static Grid Output] Block
	The [Chombo HDF5 output] Block
	The [Parameters] Block

	STEP # 4: Problem Configuration: init.c
	The Init() function
	The UserDefBoundary() function
	The BodyForce...() functions
	The Analysis() function

	Basic Physics Modules
	The HD Module
	Equations
	Available Options

	The MHD Module
	Equations
	Available Options
	Assigning Magnetic Field Components
	Controlling the bold0mu mumu BBBBBB=0 Condition
	Background Field Splitting

	The RHD Module
	Equations
	Available options

	The RMHD Module
	Equations
	Available Options

	Non Ideal Effects
	Viscosity
	Viscous Coefficients

	Resistivity
	Thermal Conduction
	Dimensions

	Numerical Integration of Diffusion Terms
	Explicit Time Stepping
	Super-Time-Stepping (STS)

	Cooling
	Units and Dimensions
	Power Law Cooling
	Tabulated Cooling
	Simplified Non-Equilibrium Cooling: SNEq
	Multi-Ion Non-Equilibrium Cooling: MINEq

	Additional Modules
	The ShearingBox Module
	Using the module

	The FARGO Module
	Using the Module
	A Note on Parallelization

	High-order Finite Difference Schemes
	WENO schemes
	LimO3 & MP5

	Output and Visualization
	Output Data Formats
	Binary Output: dbl or flt data formats
	HDF5 Output: dbl.h5 or flt.h5 data formats
	VTK Output: vtk data format
	ASCII Output: tab Data format
	Graphic Output: ppm and png data formats
	The grid.out output file

	Customizing your output
	Changing Attributes

	Visualization
	Visualization with IDL
	Data Visualization with Gnuplot
	Data Visualization with VisIt or ParaView
	Data Visualization with pyPLUTO

	Adaptive Mesh Refinement (AMR)
	Installation
	Installing HDF5
	Installing and Configuring Chombo

	Configuring PLUTO-Chombo
	Header File definitions.h
	AMR_EN_SWITCH
	The pluto.ini initialization file
	Controlling Refinement

	Running PLUTO-Chombo
	Reading and Visualizing HDF5 Files
	Visualization with IDL

	Equations in Different Geometries
	MHD Equations
	Cartesian Coordinates
	Polar Coordinates
	Spherical Coordinates

	(Sperical) Relativistic MHD Equations
	Cartesian Coordinates
	Polar Coordinates
	Spherical Coordinates

