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ABSTRACT

We explore the practical feasibility of active galactic nucleus (AGN) broadband reverberation mapping and present
first results. We lay out and apply a rigorous approach for the stochastic reverberation mapping of unevenly sampled
multi-broadband flux measurements, assuming that the broad-line region (BLR) line flux is contributing up to 15%
in some bands, and is directly constrained by one spectroscopical epoch. The approach describes variations of the
observed flux as the continuum, modeled as a stochastic Gaussian process, and emission line contribution, modeled
as a scaled, smoothed, and delayed version of the continuum. This approach can be used not only to interpolate
in time between measurements, but also to determine confidence limits on continuum—line emission delays. This
approach is applied to Sloan Digital Sky Survey observations in Stripe 82 (S82), providing flux measurements that
are precise to 2% at ∼60 epochs over ∼10 yr. The strong annual variations in the epoch sampling prove a serious
limitation in practice. In addition, suitable redshift ranges must be identified where strong, broad emission lines
contribute to one filter, but not to another. By generating and evaluating problem-specific mock data, we verify that
S82-like data can constrain τdelay for a simple transfer function model. In application to real data, we estimate τdelay
for 323 AGNs with 0.225 < z < 0.846, combining information for different objects through the ensemble-scaling
relationships for BLR size and black hole mass. Our analysis tentatively indicates a 1.7 times larger BLR size of Hα
and Mg ii compared to Kaspi et al. and Vestergaard, but the seasonal data sampling casts doubt on the robustness
of the inference.
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1. INTRODUCTION

Quasars have long been known to exhibit rapid optical
variability that can be attributed to variations in the luminosity of
the accretion disk surrounding a black hole of typically 108 M�
(Smith & Hoffeit 1963; Greenstein & Smith 1964).

Reverberation mapping (Blandford & McKee 1982; Kaspi
et al. 2000) is an established way for estimating the size of
the active galactic nucleus’ (AGN’s) broad-line region (BLR).
The continuum radiation from the accretion disk photo-ionizes
and excites gas clouds close to the black hole to produce broad
(about 1000 to 10,000 km s−1) emission lines. In reverberation
mapping, the time delay τdelay between observed variations in the
accretion disk continuum and the broad emission lines is a proxy
for RBLR as light-travel time arguments lead to RBLR ∝ c τdelay.
For Keplerian motions of the BLR clouds, this implies for the
mass of the central black hole, MBH

MBH = f
ΔV 2c τdelay

G
(1)

where G is the gravitational constant and f is a proportionality
factor of order unity that depends on the geometry and kinemat-
ics of the BLR (e.g., Peterson & Wandel 1999). Detailed de-
scriptions of this method as well as applications can be found,
for example, in Peterson (1997), Peterson & Wandel (1999),
Peterson (2013), and Kaspi et al. (2000).

With the benefits of many spectral observational epochs in
reverberation mapping campaigns, given reliable average emis-
sion line widths Δv, reverberation mapping provides reliable
direct measurements of the size of the BLR and the black hole

4 Hubble Fellow.

mass (e.g., Kaspi et al. 2007; Peterson et al. 2004). Kaspi et al.
(2000) presents an MBH–L relation based on spectrophotomet-
rical reverberation measurements for a sample of 17 Palomar-
Green quasars, and a total of 34 sources, including low-L AGNs.

They obtained the size of their BLRs and determined relation-
ships between line luminosities, BLR sizes, and central black
hole masses to find that the BLR size scales with the rest frame
5100 Å luminosity as

RBLR = (
32.0+2.0

−1.9

) (λLλ(5100 Å)

1044 erg s−1

)0.700±0.033

light days.

(2)
Comparable studies have been done by Vestergaard et al.
(Vestergaard 2002; Vestergaard & Peterson 2006) and Bentz
et al. (2009). They found four empirical mass scaling relation-
ships between the line widths and luminosity for estimating MBH
in nearby AGNs and distant luminous quasars. Those mass esti-
mates are quite rough. For example, Vestergaard (2002) indicate
the absolute uncertainties in masses estimated from the relation-
ships of a factor of ∼4.

The purpose of the present study is to estimate BLR sizes
from existing multi-epoch broadband flux measurements. We
build on the formalism from Zu et al. (2011) and Chelouche
& Daniel (2012) and extend it to handle sparsely sampled
broadband photometric data.

The basic idea is that some of the photometric passbands
contain only continuum emission, while other passbands have
significant contributions from continuum and (temporally de-
layed) line flux. Recent results from Haas et al. (2011), who
tested narrow-band photometric reverberation mapping, and
Chelouche & Daniel (2012) and Chelouche & Zucker (2013),
who suggested broadband photometric reverberation mapping,

1

http://dx.doi.org/10.1088/0004-637X/801/1/45
mailto:hernitschek@mpia-hd.mpg.de


The Astrophysical Journal, 801:45 (31pp), 2015 March 1 Hernitschek et al.

illustrate the potential of using photometric data. Zu et al.
(2013a) compared the results of spectroscopic and photomet-
ric reverberation mapping applied to the Palomar-Green quasars
and OGLE-III and IV. They found that the photometric approach
is capable of competing with spectroscopic reverberation map-
ping if very small photometric uncertainties are available and
strong lines (Hα, Hβ) are used. Upcoming photometric surveys,
such as the LSST, are planned to continuously monitor at least
107 quasars (0 < z < 6) during the next decade (MacLeod et al.
2012). Broadband photometric reverberation mapping can use
such data to make the mass estimate of large samples of objects
feasible to increase the number of reverberation mapped objects
by several orders of magnitude (e.g., Chelouche et al. 2014).

This formalism was first tested on mock light curves gen-
erated by a Gaussian stochastic process. Then it was applied
to a suitable set of multi-band quasar light curves, drawn from
the nearly 10,000 spectroscopically confirmed quasars in the
Sloan Digital Sky Survey Stripe 82 (SDSS S82; Schmidt et al.
2010; Schneider et al. 2007), which were complemented by
a spectroscopic measurement of the emission line widths for
each quasar at one epoch. Due to the small expected signal and
the S82 time sampling, we found it useful to not focus on the
τdelay estimates of individual objects, but to presume that there
is a RBLR(L) relation, and determine its scaling normalization
in different redshift and luminosity regimes by jointly model-
ing several light curves. The reverberation mapping results are
compared to estimates from MBH–L relationships in Kaspi et al.
(2000), Vestergaard (2002) and Bentz et al. (2013).

This paper is organized as follows. In Section 2 we give
an overview of reverberation mapping, especially the theory
behind this method, and preliminary reverberation mapping
results. After introducing the methods of describing quasar
variability as a stochastic process in Section 3, we introduce the
stochastic reverberation mapping approach in Section 4. This is
outlined in more detail in Appendix A, where the mathematical
framework of the stochastical process model for the light curve
and the application of the method to data are described. After
describing the application to SDSS S82 data in Section 5, results
are shown in Section 6. In Section 7, we conclude with a
discussion of results. In the table section we provide a complete
list of estimated masses for all quasars from our samples where
reverberation mapping was carried out successfully.

2. REVERBERATION MAPPING

Over the duration of a reverberation mapping program, the
continuum behavior can be written as f c(t) = 〈f c〉 + Δf c(t),
where Δf c(t) is the continuum light curve relative to its
mean value 〈f c〉, given in arbitrary flux units (Peterson 1997).
Integrated over the velocity-dependent line profile, the emission-
line response can be written as a function of the line-of-sight
velocity v as f e(t) = 〈f e〉+Δf e(t). On reverberation timescales
(weeks to years), both continuum and emission-line variations
are usually rather small (typically ∼10–20%), so the response
of the emission line flux to (e.g., increased) continuum flux can
be modeled by a convolution integral (Peterson 1997)

Δf e(t) =
∫

Ψ(τdelay)Δf c(t − τdelay) dτdelay, (3)

which is usually known as the transfer equation, where Ψ(τdelay)
is the transfer function. In its mathematically simplest form, this
transfer function can be taken as a δ function that is offset in
time by τdelay, Ψ(τdelay) = δ(t − τdelay). The BLR geometry and

detailed spectrosopic data for nearby objects indicate that such
a transfer function is too simplistic; nonetheless, we use this
approach involving a δ function transfer function in this study,
because broadband reverberation mapping is unlikely to yield
any velocity-dependent information. This leads to a scaling and
delay during the transfer function, whereas the use of other
transfer functions can also lead to smoothing.

The goal of reverberation mapping is to use the observables,
namely the continuum light curve f c(t) and emission-line light
curve f e(t), and invert the transfer equation (3) in order to
recover the velocity–delay map Ψ(τdelay), or at least make
inferences about τdelay (Peterson 1997).

When spectroscopic reverberation mapping data are avail-
able, a cross-correlation approach between the pure line and con-
tinuum light curves has often been employed (Peterson 1997).
For the case of broadband photometric light curve data, a simple
model to illustrate the calculations based on photometric data is

fk(t) = f c
k (t)

fl(t) = f c
l (t) + f e

l (t)

= s f c
k (t) + e f c

k (t − τdelay) (4)

where f (t) is the flux on each time, index k denotes a band with
only continuum, l a continuum and emission line contribution
band, the superscripts c and e denote continuum or emission
line contributions, τdelay is the delayed response, and s and e
are scaling factors. For estimating the delay τdelay between the
continuum flux f c

k (t) and emission line flux f e
l (t), one must

compute the cross-correlation function (CCF) between these
two components of the light curve (Edri et al. 2012):

CCF(Δt) = f e
l (t + Δt) ∗ f c

l (t)

= (
fl(t + Δt) − f c

l (t + Δt)
) ∗ f c

l (t)

where ∗ denotes the integral over time (convolution between the
two functions).

The peak (maximum) of the CCF (Δt) gives the required time
delay τdelay.

We now assume that the time variability of the continuum
flux in the l band is the same as in the k band. This is a
good approximation in the optical because the continuum is
75%–95% of the total flux, where the remaining variable flux is
mostly coming from the broad lines. With this approximation,
f c

l (t) ≈ fk(t), and e 
 1 (Equation (4)), so that CCF(0) ∼ 1,
this leads to:

CCF(Δt) ≈ (fl(t + Δt) − fk(t + Δt)) ∗ fk(t)

≈ CCFlk(Δt) − ACFk(Δt). (5)

This approximation was also used by Chelouche & Daniel
(2012). One complication to consider when calculating the
CCF and the autocorrelation function (ACF) is the non-uniform
time sampling that is generic for astronomical data. In order
to overcome this difficulty, some authors use the interpolated
cross-correlation function method (ICCF; Gaskell & Peterson
1987), where mean and standard deviation of the time series
are calculated at every time step, taking into account only the
values within the overlapping part of the light curves. Another
complication arises from propagating the magnitude errors to
errors for the time delay. Most of the CCF-related approaches
have problems doing so. Both problems can be solved with
advanced reverberation mapping techniques based on fitting
and modeling the light curves using a structure-function model.
What is explained here for the CCF and ACF, will also apply
basically to more advanced reverberation mapping techniques.
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3. QUASAR LIGHT CURVES AS A
STOCHASTIC PROCESS

Simple interpolation methods may fail when trying to carry
out reverberation mapping on sparsely and very non-uniformly
sampled light curves. Some methods, such as ICCF (Gaskell
& Peterson 1987), have been developed to deal with some
degree of non-uniform time sampling. However, for temporal
sampling as uneven as in S82, we found that these methods
are not suitable (as we demonstrate in Appendix C.2. For the
case at hand we need a description of the quasar variability
that rigorously accounts for all the information we have on
the overall light-curve statistics, when interpolating between
measurements. Following Kozłowski et al. (2010) and Butler &
Bloom (2011), we build a model for the quasar light curves based
on a Gaussian process, because the Gaussian is the simplest two-
point distribution function with a non-trivial variance that allows
one to fit and stochastically interpolate light curves.

Quasar light curves vary stochastically across a large dynamic
range of timescales (e.g., Kozłowski et al. 2010). Their variabil-
ity is sensibly characterized by a structure function (e.g., Hughes
et al. 1992; Collier & Peterson 2001; Kozłowski et al. 2010)
that describes the mean squared difference (or, sometimes, root
mean square difference) between pairs of observations of some
object’s brightness as a function of the time lag difference be-
tween the observations. In more detail, the structure function is
a description of a second-order statistic of the brightness history
of the source. As such, it does not give a direct description on
how to fit such measurements or generate mock data.

A model and algorithm based on this is built to have a
consistent description of quasar variability, from which we
cannot only estimate structure function parameters of given
light curves, but also generate mock light curves consistent with
any reasonable set of structure function parameters, fit light
curves, and, as a main goal, produce a reverberation mapping
model that is able to deal with the very uneven time sampling
present in SDSS S82 quasar light curves. Because the Gaussian
is the simplest two-point distribution function with a non-trivial
variance that meets these conditions, we build this model from
a Gaussian process. The description here is mainly based on
Butler & Bloom (2011).

We assume a set of N measurements mi taken at time ti,
being calibrated magnitude or flux measurements taken in a
single bandpass of a single source associated with an uncertainty
variance σi . The structure function V (|Δt |) is then defined
(Rybicki & Press 1992) as the expectation value E[·] for the
difference between observation mi and mj (with i �= j ),

E[(mi − mj )2] = σ 2
i + σ 2

j + V (|ti − tj |). (6)

Here, the observations are presumed to be independent, and the
structure function V (·) effectively describes the variance.

To proceed, one must specify a concrete form for the quasar
structure function, and two forms have been used in literature
(e.g., Schmidt et al. 2010, Butler & Bloom 2011, MacLeod et al.
2010), first a power law

V (|Δtij |) = A2

(
Δtij

1 yr

)γ

(7)

(e.g., Schmidt et al. 2010), where the amplitude A quantifies
the root-mean-square magnitude difference on a 1 yr timescale,
and γ characterizes the time dependence of this difference. As
VΔt=∞ → ∞, for V∞, it is practical to use reference values,
V (tobs) and tobs in the characterization.

Second, one can describe the quasar structure function as a
damped random walk (DRW), for which the covariance function
of a Gaussian process has an exponential form

Cij = ω2

2
exp

(
−|Δtij |

τ

)
, (8)

(e.g., Butler & Bloom 2011) where τ is a damping timescale and
ω2 is the intrinsic variance of the process. Following MacLeod
et al. (2012), using the asymptotic value of the structure function
V (V∞ = √

2ω) results in

V (|Δtij |) = ω2

2

(
1 − exp

(−2|Δtij |
τ

))
. (9)

The DRW model can be equivalently parameterized τ and the
slope of V on short timescales, ω̂ =

√
2ω2/τ (Kelly et al. 2009).

A detailed description can be found in Appendix A.
Depending on the application, |Δtij | can refer to the time

lag between observations in the quasar rest frame or in the
observed frame. Referring to the quasar rest frame, which needs
a priori knowledge of the quasar redshift, can be important if the
structure-function parameters being estimated should be linked
to physical properties of a quasar.

There is some discussion about which structure-function
model would fit best. Kelly et al. (2009), Kozłowski et al. (2010),
MacLeod et al. (2012), and Andrae et al. (2013) have shown that
quasar variability is well modeled by the DRW. Zu et al. (2013b)
tested whether the DRW model provides an adequate description
of quasar variability across all timescales. On timescales larger
than a few years, the light curves are generally consistent with
the DRW model, but are not giving clear constraint on models.
Alternatively, some authors (Hook et al. 1994; Richards et al.
2006, 2008; Schmidt et al. 2010; Morganson et al. 2014) use the
power-law model described above.

The structure function is the basis for the Gaussian process
model that we fit to the data.

A Gaussian process is characterized by a function describing
the mean measurement m(t) (magnitude or flux) as a function
of time t and a function C(t, t ′) describing the covariance
between observations at different epochs t and t ′. Assuming
that the mean is constant and the process is stationary such that
C(t, t ′) ≡ C(t − t ′), the probability of a set of N observations
{mi}Ni=1 is given by that of the N-dimensional Gaussian with
mean (m,m, ..., m)T and N ×N dimensional covariance matrix
C with elements Cij = C(ti − tj ).

After parameterizing the structure function, the complete
model—the Gaussian process with mean vector m̄ and vari-
ance V—for any set of observations is specified by only three
model parameters, either in the case of the power law (m̄, A, γ )
or in the case of a damped random walk (m̄, ω, τ ). Thus, the
likelihood P (data|modelpar) can be described as P (m, A, γ ) =
N (m|m̄, C) or P (m, ω, τ ) = N (m|m̄, C), respectively, with
V expressed as a function of the structure-function parame-
ters (A, γ ) or (ω, τ ), respectively. The term N (m|m̄, C) is the
Gaussian process. This approach can yield a posterior proba-
bility distribution to the two model parameters, A and γ or ω
and τ . We assign uninformative priors for the parameters, and
then explore the posterior distribution for these parameters via a
Markov Chain Monte Carlo (MCMC) approach. By using this,
one can (a) model the light curve to get an estimate for the struc-
ture function parameters, (b) use the estimates for the structure
function parameters (e.g., for selecting quasars), or for advanced
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reverberation mapping techniques as in the present work that re-
quire interpolation of the light curves, and (c) generate mock
light curves as test data for this methods.

In the following, we refer to the formalism by Rybicki &
Press (1992) and Zu et al. (2011), and summarize them here for
convenience.

In practice, we marginalize over the mean m̄ rather than
fitting for it. This marginalization can be done analytically
when assuming a uniform prior on the mean (see Rasmussen &
Williams 2006, Equation (2.45)), and leads to the probability

P (m|p) ∝ L(m|p) ≡ |S + N |−1/2|LTC−1L|−1/2

× exp

(
−mTC−1

⊥ m
2

)
, (10)

where for the damped random walk model the remaining
parameters p are τ and ω, and for the power-law model A and γ .
L represents the likelihood function that we must maximize in
order to find the most likely combination of those parameters.

In Equation (10), the intrinsic variability has a covariance
matrix S = 〈ss〉, whereas the noise has a covariance matrix
N = 〈nn〉. The covariance function of the Gaussian process is
then given by C = S + N . The component of the covariance
matrix C that is orthogonal to the fitted linear functions is given
by C−1

⊥ ≡ C−1 − C−1LCqL
TC−1. m is the data vector. L is a

response matrix (see Zu et al. 2011 and Press & Rybicki 1992).
Suppose we have measured data m consisting of an under-

lying true signal s, measurement uncertainties n, and a general
trend defined by the response matrix L and a set of linear coef-
ficients q, thus, m = s + n + Lq. Using the linear coefficients
to optimally determine the light curve mean, in the case of one
light curve, we have one linear coefficient q1 ≡ q for the mean,
and the response matrix is simply a column vector Li1 = 1 with
an entry for each of the K data points, i = 1, . . . , K . If we
have two light curves with a possible offset in their means, we
could use separate means for each, (Li1, Li2) = (1, 0) for data
from the first light curve and (Li1, Li2) = (0, 1) for the second
one. Additionally, L can be used for light curve de-trending. For
details on how we implemented de-trending, see Section 4.1.2.

The Gaussian-process formalism also allows for straightfor-
ward interpolation of the observed light curve between time
samples with interpolation uncertainties, or the construction of
mock light curves with a given structure function. We use the
latter to generate mock light curves to test our photometric re-
verberation mapping technique. This formalism is explained in
detail in Rasmussen & Williams (2006) and Rybicki & Press
(1992). We refer the reader to those references for full details.

For an example light curve (Figure 1), this fit is shown in the
left panel of Figure 2. We also give the best model parameter
values along with the confidence regions (see below) in the right
panel of Figure 2.

The expression in terms of a Gaussian process allows one
to generate a wide variety of mock light curves as test data for
applications dealing with light curves, such as structure-function
parameter estimation or reverberation mapping.

As the fundamental property of a Gaussian process is that all
of its marginal distributions—marginalizing over unobserved
times—are Gaussian, generating a mock light curve is then just
sampling from the appropriate Gaussian distribution. Realistic
values in the power-law case are 0.07 < A < 0.28, 0.15 < γ <
0.5 (Schmidt et al. 2010). In the power-law model, the amplitude
A quantifies the root-mean-square magnitude difference on a 1 yr
timescale. γ is the logarithmic gradient of this mean change

in magnitude. In DRW model, a larger ω makes the curve
more variable, and a larger τ makes it more smooth (variability
on longer timescales). Realistic values in the DRW case are
0.1 < ω < 0.4, 1 < log τ < 3 (MacLeod et al. 2010).

4. STOCHASTIC REVERBERATION MAPPING

As reverberation mapping is often carried out using CCF
and ACF, a complication to consider when calculating the CCF
and ACF is the non-uniform time sampling that is generic for
astronomical data. In addition, in order to estimate the time
delay and its uncertainty, we need to propagate the magnitude
errors in the light curves to errors for the time delay. Most
of the CCF-related approaches have problems with doing so
because they are not able to propagate errors. Additionally, in
Appendix C.2 we demonstrate that for a S82-like time sampling,
these approaches are not sufficient. Both problems can be solved
by advanced reverberation mapping techniques based on fitting
and modeling the light curves using a structure-function model
so the structure-function parameters, the time lag τdelay, its
statistical confidence limits, and in some cases additional values
are estimated.

In detail, we follow the approach of Rybicki & Kleyna (1994)
and Zu et al. (2011), which we extended for application to
broadband photometry. The basic methodology is described
here, and is outlined in more detail in Appendix A.1, where the
mathematical framework and application of the method to the
data are described. Additionally, the methodology and output of
the stochastic reverberation mapping algorithm is summarized
in Figure 4.

The approach being described in this section is capable of

1. handling transfer functions Ψ(τdelay) instead of simply a
τdelay, thus being able to map out the physical structure of
the broad-line region that cannot simply be modeled by a δ
function

2. not only interpolating between data points, but also making
self-consistent estimates and including these uncertainties
in the interpolation

3. separating light curve means and systematic errors in
flux calibration from variability signals and measurement
uncertainties in a self-consistent way

4. deriving simultaneously the lags of multiple emission lines
and their covariances

5. providing statistical confidence limits on all estimated
parameters

The approach assumes that all emission-line light curves are
scaled, smoothed, and displaced versions of the continuum. We
assume for simplicity that we have photometric quasar light
curves in the k (e.g., SDSS r) and l (e.g., SDSS g) bands, where
the l band contains emission line and continuum flux, and the k
band has continuum only. Then we can write the fluxes as

fk(t) = f c
k (t)

fl(t) = f c
l (t) + f e

l (t)

= s f c
k (t) + e

∫
Ψ(τdelay)f c

k (t − τdelay) dτdelay. (11)

This equation is the general version of (4), allowing for a
smoothed response due to the arbitrary transfer functions.
In (11), fk and fl are the total fluxes in the k and l band, respec-
tively, and superscripts c and e denote continuum and emission-
line contributions. s and e are linear scaling factors between

4
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Figure 1. Magnitudes in two filter bands of the example light curve headobjid = 587731185126146081 and corresponding spectrum plate = 383, fiber = 257, mjd =
51818; the light curve is from a spectroscopically confirmed quasar of the SDSS Stripe 82 in a redshift region where the g band reflects almost exclusively accretion
disk continuum emission, whereas the i band has Hα emission line contribution. Additionally, other emission lines are present.

k and l band variability. In our application, they are constrained
spectroscopically (see Equations (27) and (28)). The delayed
response to the continuum is described by the normalized one-
dimensional transfer function Ψ(τdelay) (Peterson 1997), that is,

f e(t) =
∫ +∞

−∞
Ψ(τdelay)f c(t − τdelay) dτdelay. (12)

The generalization of this formalism to the case of two or
more emission lines in separate bands is straightforward. We
did not use this here because it was not appropriate for the light
curves we had analyzed. In the case of a δ function transfer
function, Equation (11) reduces to Equation (4).

We assume that the quasar continuum light curve can be
described as a Gaussian stochastic process (e.g., Kozłowski
et al. 2010, MacLeod et al. 2012) and that the l-band flux
varies linearly with the k-band flux (Schmidt et al. 2012). The
continuum model is then characterized by a variance matrix
Ccc

kk resulting from any Gaussian stochastic variability process,
for example, the damped random walk Kelly et al. (2009) or a

power-law structure function model (Schmidt et al. 2010). The
emission-line covariance matrix Cee

ll is then given by

Cee
ll (Δt) = 〈f e

l (t), f e
l (t + Δt)〉

= e2
∫

dτdelay,1

∫
dτdelay,2Ψ(τdelay,1)Ψ(τdelay,2)Ccc

kk

× (Δt − τdelay,2 − τdelay,1). (13)

Similarly, the continuum–line-emission cross terms are given
by

C
ec/ce

ll (Δt) = e

∫
dτdelayΨ(τdelay)Ccc

ll (Δt ± τdelay)

= s2 e

∫
dτdelayΨ(τdelay)Ccc

kk(Δt ± τdelay) (14)

C
ec/ce

lk/kl (Δt) = e

∫
dτdelayΨ(τdelay)Ccc

kk(Δt ± τdelay) (15)
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Figure 2. (a) Result of a structure-function model fit to the g-band light curve of the Stripe 82 quasar headobjid = 587731185126146081, Figure 1; for this object
the g band reflects almost exclusively accretion disk emission. The posterior probability distribution (PDF) obtained through MCMC (Foreman-Mackey et al. 2012)
is shown. The marginalized 68% and 90% confidence intervals for A and γ are indicated by horizontal and vertical bars. The cross marks maximum-at-posterior.
(b) Result of the interpolation of continuum light curve (g band) for fit (Equation (A13)) for object headobjid = 587731185126146081, Figure 1, derived from the best
fit (structure-function parameters at maximum at posterior) to the light curve’s structure function. The solid line represents the best-fit mean model light curves from
the power-law model. The area between the dashed lines reflects the variance for the light curve prediction, arising from the stochastic models; this variance reduces
to the range of measurement errors at epochs where data exist (see Equation (A13)). These figures can be also found as part of Figure 4 in Section 4, which gives an
overview about methodology and the output of the stochastic reverberation mapping algorithm.

where the ± refers to combinations in the sub- and superscripts
of the left-hand side as ± and Ccc

ll = s2Ccc
kk , Ccc

kl = sCcc
kk as

given by the flux model Equation (11).
Corresponding equations where the integrals are written out

using a δ-function transfer function and the power-law model
can be found in Appendix B at Equations (B1)–(B3). Figure 4
gives an overview on the usage of the different covariance
matrices.

These terms can now be used to write the covariance matrix
for the k-band continuum and l-band continuum plus emission
line fluxes as

C =
(

Ccc
kk C

c,(e+c)
kl

C
(e+c),c
lk C

(e+c),(e+c)
ll

)
(16)

with

C
c,(e+c)
kl = Cce

kl + Ccc
kl (17)

C
(e+c),(e+c)
ll = Ccc

ll + Cec
ll + Cce

ll + Cee
ll . (18)

Using the covariance matrix as defined above, in Gaussian
statistics the probability of some parameters (the structure
function parameters and the time delay τdelay) given the data
(in flux units as we refer to flux here) can be computed, which
yields a maximum likelihood approach P (m|p) ∝ L(m|p) (see
Equation (A20)) where p are the model parameters (i.e., the
structure-function parameters) and (e, s, τdelay) where e and s
are constrained spectroscopically. How this approach is carried
out technically is shown in Appendix A and B.

To illustrate the typical shape of the probability distribution
functions (PDFs), an example output is shown in Figure 3.

4.1. Parameter Estimation by MCMC

We chain the likelihoods, as we first analyze the continuum
light curve on its own to estimate the structure-function parame-
ters pstruc. Then we do a joint analysis of the continuum and emis-
sion line light curve using the values for the structure-function
parameters estimated in the first step in order to estimate ptrans.

4.1.1. Estimating Structure Function Parameters

Estimation of the structure-function parameter is done by
evaluating the logarithmic posterior probability distribution

log Pposterior = log P (p) + logL(m|p) (19)

where p = pstruc are the structure function parameters and
m are the measured light curve points. L(m|p) is given by
Equation (A20) and P (p) represents the prior PDF of the
structure-function parameters. In this equation the intrinsic
variability of the data is described by a covariance matrix S,
whereas the noise has a covariance matrix N. For estimation of
the structure-function parameters, we use a data vector m ← fk.

For a power-law model, we have

log P (p) = log P (A) + log P (γ ), (20)

where

P (A) ∝
{ 1

A
, if 0 < A � 1

0, else
(21)

P (γ ) ∝
{

1
1+γ 2 , if 0 � γ � 1

0, else
. (22)
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Figure 3. PDFs, represented in a triangle plot for the estimate of the reverberation delay τdelay for the quasar from Figure 1, derived from the simultaneous fit to the
light curve that is in one band only continuum (g band), and in the other band (i band) a combination of continuum and delayed emission line flux (see Equation (23)
in Appendix B). The figure shows an MCMC sampling of the PDF for the spectroscopically constrained emission-line fraction e and the emission line delay τdelay,
along with their marginalized 68% and 95% confidence regions (gray shading); cross marks maximum-at-posterior τdelay,MAP = 195.084, eMAP = 0.1176

Thus we enforce our assumption that the power-law exponent
γ , the logarithmic gradient of this mean change in magnitude,
is positive and that the average variability on a 1 yr timescale is
less than 1 mag.

Based on the tests described in Appendix C, we use the Affine
Invariant MCMC Ensemble sampler (Foreman-Mackey et al.
2012) to explore the posterior probability distribution.

As a result of testing, for the estimation of the structure-
function parameters and the mean magnitude m̄, we use 10
walker,5 up to 1000 iterations in a burn-in run, 200 iterations in
a post-burn-in run, initialization x(0) = (A(0), γ (0)) = (0.1, 0.1).
As m̄ is an output parameter of the algorithm evaluating the
likelihood function, it is not a component of the vector x.

4.1.2. Estimating the Time Delay

The estimation of the time delay is done by evaluating the
logarithmic posterior probability distribution

log Pposterior = log P (ptrans) + log(L(m|ptrans))

= log P (τdelay, e, s) + logL(mx, my |τdelay, e, s).

(23)

5 A detailed description of this term and the algorithm can be found in
Foreman-Mackey et al. (2012).

L(m|ptrans) is given by (A20) and P (τdelay, e, s) represents the
prior PDF of the transfer function parameters.

P (τdelay, e, s) consists of a prior on the time delay, P (τdelay),
and a prior on (e, s). The prior on the time delay is given by

P (log10 τdelay)

∝

⎧⎪⎨
⎪⎩

1√
2π

exp
[
− (log10 τdelay−log10 τdelay,0)2

log10 2

]
,

if 0.25 × τdelay,0 < τdelay < 4 × τdelay,0

0, else

.(24)

τdelay,0 is set to the time delay inferred from the Kaspi relation
Equation (40) if λLλ(5100 Å) is available, and from the virial
assumption otherwise.

For the virial mass estimates, it has been assumed
(Vestergaard & Peterson 2006) that the BLR is virialized, the
continuum luminosity is used as a proxy for the BLR radius,
and the broad-line width (FWHM or line dispersion) is used as
a proxy for the virial velocity. The virial mass estimate is then
expressed as

log

(
MBH,vir

M�

)
= a+b log

(
λLλ

1044erg s−1

)
+2 log

(
FWHM

km s−1

)
,

(25)
where the coefficients a and b are empirically calibrated against
local AGNs with RM masses, or internally among different

7



The Astrophysical Journal, 801:45 (31pp), 2015 March 1 Hernitschek et al.

lines. This results in an expected rest-frame delay of

τdelay,0 = (1 + z) · 10LOGBH · 5.121039

FWHM BROAD HB2 lightdays.

(26)

LOGBH and FWHM_BROAD_HB are the logarithmic virial
MBH and FWHM of broad Hβ (km s−1), respectively, from
the Catalog of Quasar Properties from SDSS DR7 (Shen
et al. 2011).

How (e, s) can be constrained by a prior depends much on
the information that is available beside the photometric data. In
the case of the SDSS S82 data, spectroscopic data are used to
constrain (e, s).

As we assume the flux model (11), we need to know which
part of flux in the l band belongs to the continuum and which is
emission line contribution. From the spectrum, we can get some
information on e and s, as

e ≈ 1

fk

∫
l

fe(λ)ωl(λ) dλ (27)

s = 1

fk

∫
l

fc(λ)ωl(λ) dλ. (28)

with

fk =
∫

k

fk(λ)dλ (29)

and ωl(λ): filter curve in the l band, normalized so
∫

ωl(λ)dλ =
1, EW = ∫

(f e
l (λ) − f c

l (λ))/f c
l (λ)dλ: equivalent width of

the line.
A fit for the emission line and the continuum has to be done

to get f e
l and the continuum, f c

l ≈ fl − f e
l . The emission line

is fitted as a Gaussian, using the provided FWHMline and the
continuum level at the emission line, f c

l (λline,obs),

f e
l (λ) = (fl(λline,obs) − f c

l (λline,obs)) · exp

(
− (λ − λline,obs)2

2σ 2

)
(30)

with
σ = 2.35 FWHMline,obs. (31)

For the continuum level, we use the approximation

fcont(λline,obs) = fleft + fright

2
(32)

= 1

2

(
f

(
λline,obs − EWobs

2

)
+ f

(
λline,obs +

EWobs

2

))
. (33)

Applying this to (27) and (28) gives initial values (e0, s0). We
are now able to predict an equivalent width from an (e, s) and
compare it to the observed one,

EWpred(t) = e

s

∫
fline(λ)(t − τdelay)dλ∫

fline(λ)(t − τdelay)ω(λ)dλ
(34)

where
fline(λ)(t) = a(t) · fline(λ)(t0) (35)

with t0 as the time the spectrum was taken. Because we assume
e and s to be constant over time,

a(t) = f (t)

f (t0)
= f (mx(t))

fx(t0)
, (36)

interpolation of the light curve in the continuum-only band x has
to be done. We are now able to predict an equivalent width from
some (e, s) and compare it to the observed one at the time t0 the
spectrum was taken. From this, with EWpred ≡ EWpred(t0), one
gets the likelihood term

Lspec ∝ 1√
2πδEWobs

exp

(
− (EWobs − EWpred)2

2δEW 2
obs

)
, (37)

where δEWobs is measurement uncertainty in the equivalent
width of the observed emission line. In our application to SDSS
S82 data, observed equivalent widths EWobs are retrieved from
the Catalog of Quasar Properties from SDSS DR7 (Shen et al.
2011).

Equation (37) is multiplied with the previous likelihood
term (10) to describe the likelihood of the model parameter
p given the data m. In this equation, the intrinsic variability of
the data is described by a covariance matrix S, whereas the
measurement uncertainties have a covariance matrix N. For
estimation of the time delay from one emission line, we use
a data vector m ← (fk, fl).

Light curve de-trending is applied through the response
matrix L. Basically, if we have two light curves with a possible
offset in their means, we can use separate means for each,
(Li1, Li2) = (1, 0) for the continuum light curve fk and
(Li1, Li2) = (0, 1) for the light curve containing a continuum
and emission line contribution fl.

As mentioned in some papers referring to the basic approach
of this algorithm, (e.g., Zu et al. 2011), the response matrix L
can also be used to describe and remove a general trend in the
light curve, which is called de-trending. De-trending has been
shown to considerably improve reverberation mapping because
removing a general linear trend in the light curve so better
realizes the limit of stationary light curves (e.g., Welsh 1999).
After some tests, for de-trending fk and fl, we decided to use
(Li1, Li2) = (ti , 0) and (Li1, Li2) = (0, tj ), respectively.

Figure 4 summarizes the methodology and output of the
stochastic reverberation mapping algorithm.

Based on the tests described in Appendix C, we use the Affine
Invariant MCMC Ensemble sampler (Foreman-Mackey et al.
2012) to explore the posterior probability distribution.

For the estimation of τdelay, s, e, we use 15 walker, up to
2000 iterations in a burn-in run, 800 iterations in a post-burn-in
run, initialization x(0) = (s(0), e(0), τ

(0)
delay), where s(0), e(0), τ

(0)
delay

depends on the current light curve. The start position of the
walkers is x(0) + r , where r is some random number, so the
walkers start in a small area in parameter space around x(0).

5. QUASAR SPECTROSCOPY AND LIGHT CURVES
IN THE SDSS STRIPE 82

The SDSS (York et al. 2000) provides homogeneous and deep
(r < 22.5) photometry in five passbands (ugriz), typically for
more than 60 epochs of observations over a decade in a 290 deg2

area of the Southern Galactic cap known as S82, (Frieman et al.
2008; Annis et al. 2014; Ivezić et al. 2012). These photometry
epochs were obtained in early seasons of about 2–3 months,
effectively sampling timescales from days to years.

8
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Figure 4. Methodology of stochastic reverberation mapping illustrated using the example of light curve headobjid = 587731185126146081, with z = 0.1506,
continuum-only band k: g band, continuum+emission line band l: i band with strong Hα.

The photometric data for the ugriz bands are simultaneous,
and an example of such a light curve (only two bands are plotted)
is shown in Figure 1. This area of SDSS is also exceptional in
that it has complete spectroscopic quasar identification (Shen
et al. 2011), resulting in a sample of 9,156 quasars, with spectra.
Additional information on these quasars exists in the Catalog of
Quasar Properties from SDSS DR7 (Shen et al. 2011).

Until the first data release of LSST, this S82 data set, with
its combination of single epoch spectra and multi-band light-

curves for 104 quasars (see also Figure 1), is the best data set to
carry out broadband reverberation mapping. It is the same data
set that was used by Schmidt et al. (2010).

The data are all publically accessible through the SDSS data
archive.6 For our application, all light curves have been cleaned
of manifest outliers by simply considering measurements having
a magnitude error of �0.1, and removing them. To obtain further

6 http://casjobs.sdss.org/CasJobs/default.aspx
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Figure 5. (a) Histogram of the observational time lags (first 600 days) in the light curve (differences between the data points); total observational period: 2959 days,
(b) percentage recovered ±1 day vs. τdelay from mock light curves with the time sampling resulting in observational time lags from figure (a); crosses mark the
evaluated lags, lines are displayed to guide the eye.

information on each individual quasar, such as for instance
equivalent widths or values needed for calculating a prior on
the size of the broadline region as described in Section 4.1.2,
Equation (24), we cross-matched the list of objects from SDSS
S82 with the Catalog of Quasar Properties from SDSS DR77

(Shen et al. 2011).
We linked the spectra, light curves, and additional information

from DR7 by requiring a positional match of ∼1. For 9,120 light
curves from SDSS S82, a unique corresponding entry was found
in the DR7 Quasar Properties Catalog. No match was found for
the remaining 36 light curves. There were no double matches.

For the subsequent analysis, we converted all light curve
measurements to linear fluxes rather than magnitudes. To get
the flux fk in the specific band k in units of erg s−1 cm−2, the
effective bandpass width wλ,k has to be taken into account,
resulting in

fk(t) = 3631 × 10−23 2bkc

wλ,k

× sinh

(
−mk(t) log(10)

2.5
− log(bk)

)
erg s−1cm−2.

(38)

Not all of the 9156 quasars in the sample are comparably
suitable for broadband reverberation mapping. Mock data anal-
yses (see Appendix C.2) have shown that two conditions need
to be satisfied: a redshift interval where one band has important
emission line contributions, while another band is free of them;
sufficiently many photometric epochs; in S82 they range from
2 to 160, with a median of 66.

To identify suitable redshift ranges that maximize continuum-
line contrast between two different bands, we considered the
Hα, Hβ, Mg ii lines for reverberation mapping and the C iv,
N ii λ6585, S ii λ6718, S ii λ6732, O iii λ4959, O iii λ5007,
Lyα, Lyβ, C iii], Fe ii λ2382, Fe ii λ2600, Hγ , Hδ lines as
contaminants, with the data taken from Table 2 in Vanden Berk
et al. (2001). To check whether or not a line falls into a band,
we defined the limits of a band as the wavelength where the
neighboring filters have transmission of zero. This results in
relatively narrow redshift ranges having only one out of Hα,
Hβ, Mg ii in one band (the continuum+emission line band) and
at least one other band free of all of them. There redshift ranges
are summarized in Table 1.

7 The catalog is available at https://users.obs.carnegiescience.edu/
yshen/BH_mass/dr7.htm.

Within these redshift ranges, we identify quasars whose
light-curve sampling is relatively good, because this has great
influence on the possibility of estimating a certain time delay
τdelay. In evenly sampled data the sampling rate must be higher
than the (expected) time delay. In unevenly sampled data there
must be at least some time intervals smaller than or equal to the
(expected) time delay.

We illustrate this in Figure 5 by generating mock light
curves within the actual S82 time sampling, but varying τdelay.
By applying the likelihood approach described in Section 4,
Equations (23), and (19), we then tried to recover the delay
τdelay used for generating the light curves before.

In its left panel, Figure 5 shows a histogram of the time-
intervals between SDSS S82 observational epochs of one
example light curve, illustrating the possible time-delays that are
covered by the data. The right-hand panel shows the percentage
of light curves out of this sample (10 light curves per τdelay) for
which τdelay can be recovered within ± one day. The allowed
difference of one day was chosen to prevent a larger absolute
error for objects having larger τdelay. The test data used for this
have the same time sampling and structure function parameters,
but are light curves of different objects. The values of e and s
of our mock data were set to e = 0.2, s = 1.0. As a transfer
function, we used a δ function. Due to the way test data were
generated, no line EW was set. (For details on test data, see
Appendix C.) Here “recovered” is meant the sense of the value
at maximum at posterior. A comparison of the two panels shows
that time delays that match common epoch differences in S82
(left panel) can be well recovered. This makes the histogram of
observational time lags a very useful tool to quickly estimate
whether the expected time delay should be recoverable, given
the time sampling of the light curve in case. These histograms
differ among the light curves in S82, as there are common time
sampling windows due to the SDSS, but the exact sampling and
the number of time lags available differs.

6. RESULTS

With the analysis tools from the previous section in place,
we now proceed to estimate time delays for subsets of the S82
data, which can be compared to relations for RBLR from Kaspi
et al. (2000) and Bentz et al. (2013), and relations for MBH from
Vestergaard (2002).

Given then small, expected signal and the difficulties with
the S82 time sampling, it was useful to not focus on the τdelay
estimates of individual objects, but to presume that there is
a RBLR(L) relation, and determine its scaling normalization
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Table 1
Emission Lines

redshift g r i z

0.08 Hβ, Hγ (plus some other) Continuum - Continuum
0.13–0.142 Continuum Continuum Hα (plus some other) Continuum
0.225–0.283 Continuum Hβ, Hγ (plus some other) Continuum Continuum
0.284–0.291 Continuum Hβ, Hγ (O iii λ4959, λ5007) Continuum -
0.349–0.371 Continuum Continuum Continuum Hα (plus some other)
0.463 Continuum Continuum - Hα (plus some other)
0.519–0.537 Continuum Continuum Hβ, Hγ (plus some other) Continuum
0.538–0.552 Mg ii Continuum Hβ, Hγ (O iii λ4959, λ5007) Continuum
0.553–0.554 Mg ii Continuum - Continuum
0.555–0.591 Mg ii Continuum Continuum Continuum
0.592–0.732 Mg ii (Fe ii λ2600) Continuum Continuum Continuum
0.733–0.813 Mg ii (Fe ii λ2600) Continuum Continuum -
0.814–0.846 Mg ii (Fe ii λ2600) Continuum Continuum Hβ, Hγ (plus some other)
0.847–0.851 - Continuum Continuum Hβ, Hγ (O iii λ4959, λ5007)
1.171–1.191 Continuum Mg ii Continuum Continuum
1.192–1.207 Continuum Mg ii Continuum Continuum
1.765–1.786 C vi Continuum Continuum Continuum
1.787–1.912 C vi Continuum - Continuum
1.913–2.036 C vi Continuum Continuum Continuum
2.037–2.185 C vi (Si vi) Continuum Continuum Continuum
2.186–2.254 C vi (Si vi) - Continuum Continuum
2.255–2.32 C vi (Si vi) Continuum Continuum Continuum
2.903–2.969 - C vi Continuum Continuum

Notes. In a compact form this table lists which emission lines can be used for a given redshift and in which cases there is more than one emission line in a band. “-”
indicates that this band cannot be used (a continuum and some line contribution from a line that is not used as an emission line for reverberation mapping). Sometimes
there is an emission line that can be used, but also (weak) contribution from other lines, those are written in brackets.

in different redshift (and hence luminosity) regimes, by jointly
modeling several light curves.

Previous reverberation mapping studies show a simple rela-
tionship between the size of the BLR and the corresponding
continuum luminosity L of the form RBLR ∝ Lγ (Kaspi et al.
2000). This is an important result because it provides a sec-
ondary method of estimating the central black hole masses by
using L as proxy for RBLR. This makes it a powerful tool for
mass estimation in large ensembles, since a single AGN spec-
trum yields both L and a line width ΔV suitable for estimating
the size of the broad-line region by using Lγ and then estimating
MBH by applying Equation (1). The AGN sample evaluated in
this study allows us to readdress the issue of the RBLR − L and
RBLR − MBH relations in AGNs.

We present novel empirical relationships for estimating the
BLR sizes in AGNs developed using multi-epoch photometry
combined with single-epoch spectroscopy. The found that scal-
ing relationships between line widths and luminosity are based
on empirical relationships between the BLR size and luminosi-
ties in various bands by Kaspi et al. (2000), Bentz et al. (2013),
and Vestergaard (2002). To obtain more definite results on the
RBLR − L and MBH − L relations, we evaluate well-defined
subsamples of reverberation-mapped AGN, as shown in the
Tables 2–5.

The redshift requirements combined with the strength and
S/N of the emission lines make the following redshift ranges
most suitable: z = 0.225–0.291 (with 43 light curves), z =
0.555–0.591 (with 118 light curves), z = 0.592–0.846 (with
746 light curves).

Not all light curves of the 9,156 spectroscopically confirmed
SDSS S82 quasars (see Schmidt et al. 2010; Schneider et al.
2007) can be evaluated, mostly due to inappropriate time
sampling with respect to the expected time delay. The expected

time delay is estimated from the Kaspi relation (40) if the
rest frame 5100 Å luminosity is available, or from the virial
assumption based on the FWHM of the Hβ (25) line otherwise.
We found that 35 out of the 43 light curves at z ∼ 0.25, 69 at
z ∼ 0.57, and 290 at z ∼ 0.6 − 0.85 have reasonable epoch
coverage.

To compare ensemble results to known mass–luminosity
relations, we have to omit light curves. Specifically, light curves
resulting in an unreliable posterior probability distribution were
excluded from the samples. For ensemble estimates of black
hole masses, we set a prior cutoff at τdelay/τdelay,expected = 4,
and omitted the light curve where the individual mass estimates
posterior PDF are increasing toward this cutoff or are flat. We
base our study on the 323 AGNs for which we can calculate
reliable reverberation-based RBLR estimates. For comparison,
earlier studies used much fewer objects (e.g., Kaspi et al. 2000
based on 17 QSOs and Vestergaard 2002 based on 32 AGNs),
which were mostly at lower redshifts.

Tables 2–5 present detailed information about the four sub-
samples used for determining the RBLR − L and MBH − L re-
lations and the results of individual objects. Throughout this
paper, we use the headobjid to identify individual objects.

In the following, we present our results using a power-law
structure function with posterior given by Equation (20) and
assuming a δ-function transfer function where the posterior is
given by Equation (23). We restrict ourselves to the power-
law structure function, as we have found it to produce less
covariance between the τdelay estimates and the structure-
function parameters. Both from real and mock data, we found
that using the DRW model is not successful for application to
reverberation mapping of SDSS S82 light curves. During testing
(with mock light curves), it came out that fitting with the DRW
lead to very imprecise estimates for τdelay, even with the given
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Figure 6. Result of the interpolation of continuum light curve (r band) for DRW and power law for (a) object headobjid = 587730845814686076, (b) object
headobjid = 587731186724373007, derived from the best fit (structure-function parameters at maximum at posterior) to the light curve’s structure function. The solid
line represents the best-fit mean model light curves. The area between the dashed lines reflects the variance for the light curve prediction, arising from the stochastic
models. In most cases the two functional forms lead to very similar interpolations like in (a), but in a modest number of cases the DRW provides an unsatisfying fit as
in (b). This makes light-curve interpolation on the basis of power-law structure functions more robust for this context.

priors. This is because the estimation of the fit parameters does
not work very well for sparsely sampled data because the fit
parameters ω and τ of the structure function indicate the intrinsic
variance of the process (ω2) and the damping timescale (τ ),
which cannot be estimated well when having sparsely sampled
data. However, the power-law model works very well in this
case, because the amplitude A quantifies the root-mean-square
magnitude difference on a 1 yr timescale and γ is the logarithmic
gradient of this mean change in magnitude, which is easier to
estimate. For many SDSS S82 quasar light curves, the shape
of the fitted light curve differs considerably between the power
law and the DRW model, because the DRW leads to a fit that
is less smooth than that from the power law, and shows too
much sensitivity to outliers in many cases. For comparison, the
power law and DRW model fits for two light curves are shown
in Figure 6.

6.1. Individual and Ensemble Estimates of BLR Sizes

Caution must be exercised when using time lag estimates to
calculate the size of broad-line regions. It is the fact that for
some objects, different reverberation mapping campaigns state
different values for τdelay. The implementation of corrections
(e.g., modeling the variation of the spectrum over time) is
beyond the scope of this paper. We convert the computed
observer-frame time delays τdelay,obs directly into BLR sizes
after applying a cosmological (1 + z)−1 factor, so

RBLR = c τdelay,obs(1 + z)−1. (39)

Individual RBLR for the members of our subsamples are listed
in Tables 2–5.

To define RBLR–L relations, we follow Kaspi et al. (2000)
and Bentz et al. (2013), using λLλ(5100 Å) as our luminosity
measure. Kaspi et al. (2000) found for the BLR size-luminosity
relation for the Hα line

RBLR,Kaspi = (
32.0+2.0

−1.9

) (λLλ(5100 Å)

1044 erg s−1

)0.700±0.033

light days,

(40)

which was updated by Bentz et al. (2013) as

RBLR,Bentz = (
33.651+2.490

−2.318

) (λLλ(5100 Å)

1044 erg s−1

)0.533+0.035
−0.033

× light days. (41)

For the relationships, we adopt the simple form RBLR ∝
RBLR,Kaspi and RBLR ∝ RBLR,Bentz, where RBLR,Kaspi and
RBLR,Bentz are the estimates from Kaspi and Bentz, respectively.
So we do not determine a new slope, but only a new proportion-
ality constant.

We calculated the individual posterior PDFs by evaluating
Equation (23) and introducing RBLR,Kaspi as a prior using
Equation (24). We then projected these individual PDFs as
histograms, and marginalize over the flux scaling factors e
and s. We assume that τdelay/τdelay,exp = f (L, z, EWline), this
marginalization was done for different cases:

For comparing to the relations (40) and (41), we did binning
by z according to our subsample Tables 2–5. We also binned
by luminosity λLλ(5100 Å). We evaluated 29 light curves in
the redshift range z = 0.225–0.291, with i band: Hα, z band:
continuum. Seventeen light curves out of this range were also
evaluated with r band: Hβ, Hγ (plus some other), g band:
continuum. We evaluated 68 light curves in the redshift range
z = 0.555–0.591 with g-band Mg ii, r: continuum. We evaluated
111 light curves in the redshift range z = 0.592–0.6999, with
g-band Mg ii (Fe ii λ2600), r continuum. The redshift range
z = 0.7–0.846 was evaluated with g-band Mg ii (Fe ii λ2600),
r continuum for 115 light curves.

In Figures 7(a)–(e), we show the marginalized posterior
probability distributions for comparing the ensemble RBLR to
the Kaspi relation for z-binned samples. For each sample the
redshift, emission lines, and band used for continuum are given.

In Figures 8(a)–(d) we show the deviations of our ensemble
RBLR estimates from those of the Kaspi and Bentz relations as a
function of z and L. Our results show ensemble estimates about
1.7 times larger than those from the scaling relations by Kaspi
and Bentz. There is no correlation between e and τdelay. The
typical shape of the PDF is shown in Figure 3.
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Table 2
Sample 1 Properties and Reverberation Mapping Results z = 0.225–0.291, with i Band: Hα, z Band: Continuum

Objecta zb EW(Hα)/Åc FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

587731172234231820 0.2351 247 ± 9 5.0 × 103 ± 1.4 × 102 44.182 ± 0.003 43+4
−3 1.3 × 102 +63

−1.2 × 102

587731172768874535 0.2675 2.0 × 102 ± 11 5.8 × 103 ± 3.1 × 102 44.264 ± 0.005 49+5
−4 8.2 × 102 +1.4 × 102

−68

587731174382370829 0.2332 2.6 × 102 ± 10 5.2 × 103 ± 2.8 × 102 44.244 ± 0.006 48+4
−4 55 +1.6 × 102

−25

587731174382370953 0.2814 1.7 × 102 ± 37 2.1 × 103 ± 6.0 × 102 44.210 ± 0.004 45+4
−4 48+1.5 × 102

−35

587731185660264483 0.2509 1.6 × 102 ± 36 5.3 × 103 ± 1.1 × 103 43.88 ± 0.02 26+2
−2 65 +54

−53

587731186203361389 0.279 176 ± 8 3.7 × 103 ± 4.9 × 102 44.33 ± 0.008 54+6
−5 62 +1.9 × 102

−47

587731186207031353 0.2519 2.4 × 102 ± 31 6.3 × 103 ± 2.5 × 102 44.410 ± 0.006 62+7
−6 53+2.3 × 102

−35

587731186734203087 0.2648 217 ± 8 3.7 × 103 ± 1.8 × 102 44.199 ± 0.004 44+4
−3 40+1.6 × 102

−28

587731186735644691 0.257 266 ± 4 2.4 × 103 ± 2.3 × 102 44.360 ± 0.004 57+6
−5 93+1.7 × 102

−76

587731187260784863 0.2812 2.5 × 102 ± 12 2.2 × 103 ± 2.0 × 102 44.11 ± 0.01 38+3
−3 44 +1.3 × 102

−33

587731187276841126 0.2728 2.2 × 102 ± 17 1.2 × 104 ± 1.7 × 103 44.163 ± 0.006 41+4
−3 48 +1.4 × 102

−36

587731187806830737 0.2639 1.2 × 102 ± 27 1.6 × 103 ± 2.9 × 102 44.124 ± 0.008 39+3
−3 56 +1.2 × 102

−44

587731187815481439 0.2868 3.1 × 102 ± 1 5.6 × 103 ± 3.4 × 102 44.273 ± 0.008 50+5
−5 64 +1.6 × 102

−49

587731187817381938 0.2728 3.5 × 102 ± 12 3.8 × 103 ± 3.8 × 102 44.166 ± 0.008 42+4
−3 45 +1.4 × 102

−33

587731511544774775 0.2811 1.04 × 102 ± 11 4.9 × 103 ± 2.2 × 103 44.184 ± 0.003 43+4
−3 47+1.5 × 102

−34

587731511548379306 0.2865 1.6 × 102 ± 17 3.2 × 103 ± 3.3 × 102 44.130 ± 0.003 39+3
−3 42 +1.4 × 102

−31

587731512614977609 0.2616 396 ± 4 3.3 × 103 ± 78 45.3258 ± 0.0007 2.7 × 102 +47
−41 1.8 × 102 +1.3 × 102

−1.6 × 102

587731514219036709 0.2915 3.8 × 102 ± 15 5.0 × 103 ± 1.2 × 102 44.332 ± 0.003 55+5
−4 62 +1.9 × 102

−46

587731514227818645 0.2578 2.1 × 102 ± 10 4.9 × 103 ± 3.4 × 102 44.232 ± 0.004 47+4
−3 1.5 × 102 +63

−80

587734303268077643 0.2878 1.6 × 102 ± 25 1.9 × 104 ± 3.2 × 102 44.244 ± 0.006 47+4
−4 52 +1.6 × 102

−39

587734304875020616 0.283 2.4 × 102 ± 13 1.6 × 103 ± 2.2 × 102 44.342 ± 0.003 56+5
−5 65 +1.9 × 102

−50

587734304876331060 0.2713 135 ± 5 4.9 × 103 ± 2.2 × 102 44.370 ± 0.004 59+6
−5 5 +1.9 × 102

−58

587734305416413205 0.2276 2.2 × 102 ± 15 4.6 × 103 ± 3.1 × 102 44.155 ± 0.004 41+3
−3 23 +1.6 × 102

−11

588015508208222443 0.2692 1.2 × 102 ± 13 7.2 × 103 ± 2.1 × 103 44.318 ± 0.006 53+5
−5 68 +1.7 × 102

−53

588015508213203014 0.2466 210 ± 9 1.1 × 104 ± 8.3 × 102 44.313 ± 0.007 53+5
−5 41 +2.0 × 102

−25

588015508736901262 0.242 197 ± 5 5.7 × 103 ± 3.7 × 102 44.190 ± 0.004 43+4
−3 74 +1.2 × 102

−62

588015509277376527 0.2386 353 ± 5 3.9 × 103 ± 1.9 × 102 44.438 ± 0.009 65+7
−7 94 +1.3 × 102

−75

588015509807759391 0.2738 1.8 × 102 ± 12 5.5 × 103 ± 3.4 × 102 44.147 ± 0.005 41+3
−3 45 +1.4 × 102

−33

588015509829451922 0.2369 102 ± 3 6.7 × 103 ± 1.0 × 103 44.294 ± 0.003 51+5
−4 49 +1.8 × 102

−34

Notes.
a headobjid from SDSS tables.
b Redshift.
c Rest frame equivalent width of broad line.
d FWHM of broad line.
e Computed from Kaspi relation, in rest frame.
f Own computation from all points within the 68% CI, in rest frame.

The second estimate for the first subsample of 17 light
curves, done with Hβ and Hγ in r band, gives no sensi-
ble result (see Figure 7(b)). Even when omitting light curves
with a clearly unreliable posterior PDF, the PDF tends to
a prior cutoff at τdelay/τdelay,expected = 4. This might be be-
cause Hβ is mostly weak, and there is a contribution from
Hγ and O iii λ4959, λ5007. Thus our assumption of hav-
ing the most contribution from one broadened line (here: Hβ)
doesn’t hold. For two luminosity bins in Figure 8(d), the points
would lie above the prior cutoff line, so we consider them
to be unreliable. These points are only given for reasons of
completeness.

6.2. Individual and Ensemble Estimates of Black Hole Masses

We converted the computed observer-frame time delays
τdelay,obs into rest frame delays by applying a cosmological
(1 + z)−1 factor. Then they are converted to reverberation-based
MBH by applying Equation (1). To define MBH − L relations,
we follow Vestergaard (2002), using λLλ(5100 Å) and LHβ as
luminosity measures.

Vestergaard et al. (Vestergaard 2002; Vestergaard & Peterson
2006) found four empirical mass scaling relationships between
line widths and luminosity for estimating MBH in nearby AGNs
and distant luminous quasars up to z ∼ 6. In detail, they found
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Table 3
Sample 2 Properties and Reverberation Mapping Results z = 0.555–0.591, with g Band: Mg ii, r Band: Continuum

Objecta zb EW(Mg ii)/Åc FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

587731185127129152 0.5826 41 ± 8 2.6 × 103 ± 2.9 × 102 44.17 ± 0.06 42 +8
−7 53 +1.4 × 102

−41

587731185661640908 0.5755 4 ± 8 1.8 × 103 ± 80 44.33 ± 0.02 55 +7
−6 41 +1.8 × 102

−27

587731185663082656 0.5651 22 ± 3 3.2 × 103 ± 5.7 × 102 44.40 ± 0.02 61 +8
−7 2.2 × 102 +34

−2.0 × 102

587731185663475838 0.5649 17 ± 5 3.0 × 103 ± 1.1 × 103 44.10 ± 0.08 37+9
−7 45 +1.2 × 102

−34

587731185663672525 0.5838 58 ± 20 1.0 × 103 ± 4.5 × 103 44.22 ± 0.05 46 +8
−7 39 +1.7 × 102

−26

587731185669898347 0.5681 31 ± 5 6.1 × 103 ± 2.3 × 103 44.35 ± 0.03 56+8
−7 76 +1.8 × 102

−60

587731186198708457 0.5886 53 ± 10 2.2 × 103 ± 3.2 × 102 44.22 ± 0.02 45 +5
−5 39 +1.7 × 102

−23

587731186199036062 0.5551 13 ± 2 1.9 × 103 ± 2.0 × 103 44.340 ± 0.009 55 +6
−5 57 +1.7 × 102

−43

587731186205327526 0.5691 1.0 × 102 ± 27 4.8 × 103 ± 2.0 × 102 44.29 ± 0.01 52+6
−5 77 +98

−63

587731186208080015 0.5902 67 ± 13 1.9 × 103 ± 2.6 × 102 44.18 ± 0.02 43+5
−4 16 +1.8 × 102

−4

587731186208211123 0.5766 28 ± 2 5.8 × 103 ± 8.7 × 102 44.39 ± 0.02 60 +8
−7 27 +2.2 × 102

−11

587731186455019583 0.5851 16 ± 2 1.9 × 103 ± 97 45.305 ± 0.004 2.6 × 102 +47
−40 9.8 × 102 +2.0 × 102

−6.8 × 102

587731186731254014 0.5662 1.3 × 102 ± 11 6.6 × 103 ± 1.2 × 103 44.324 ± 0.009 54 +6
−5 2.3 × 102 +12

−1.9 × 102

587731186734006569 0.5717 31 ± 6 5.5 × 103 ± 2.0 × 103 44.274 ± 0.02 50 +6
−5 44+1.6 × 102

−31

587731186734596354 0.5676 53 ± 7 1.5 × 103 ± 2.1 × 103 44.29 ± 0.02 51 +6
−5 74+1.6 × 102

−60

587731186742788371 0.5756 2.0 × 102 ± 29 7.1 × 103 ± 4.1 × 103 43.99 ± 0.03 32+4
−3 142 +1.7

−99

587731187272908947 0.5792 42 ± 6 4 × 103 ± 8.1 × 102 44.35 ± 0.02 56 +7
−6 32 +2.0 × 102

−17

587731187282215130 0.5587 38 ± 5 4.3 × 103 ± 4.8 × 102 44.32 ± 0.02 54 +6
−6 30+2.1 × 102

−15

587731187809386613 0.5705 1.4 × 102 ± 23 6.5 × 103 ± 2.7 × 103 43.94 ± 0.02 29 +3
−3 112 +7

−98

587731187816136876 0.568 41 ± 7 6.3 × 103 ± 1.9 × 103 44.31 ± 0.03 53 +7
−6 215 +2

−2.0 × 102

587731511545823430 0.5734 74 ± 15 8.9 × 103 ± 1.5 × 103 44.11 ± 0.08 38 +8
−6 18+1.6 × 102

−7

587731512073584798 0.5846 56 ± 5 7.4 × 103 ± 1.8 × 103 44.43 ± 0.02 64+9
−9 51+86

−33

587731512612815013 0.5555 40 ± 7 4.0 × 103 ± 7.5 × 102 44.25 ± 0.02 48+5
−5 41+1.8

−27

587731512613929053 0.5633 36 ± 5 2.8 × 103 ± 5.3 × 102 44.20 ± 0.05 44+7
−6 26 +1.7 × 102

−13

587731512615829758 0.5696 34 ± 5 7.6 × 103 ± 1.7 × 103 44.26 ± 0.02 48 +6
−5 31+1.7 × 102

−19

587731512620548263 0.5762 32 ± 6 3.3 × 103 ± 1.4 × 103 44.05 ± 0.04 34 +5
−4 49+94

−40

587731512621727958 0.5805 19 ± 4 4.2 × 103 ± 1.9 × 103 44.25 ± 0.01 47 +5
−5 51+1.6 × 102

−38

587731513142935636 0.5697 37 ± 4 3.3 × 103 ± 6.1 × 102 44.32 ± 0.02 53+7
−6 48 +1.7 × 102

−34

587731513144967281 0.574 42 ± 13 2.1 × 103 ± 5.7 × 102 44.17 ± 0.02 42 +5
−4 20+154

−9

587731513146736743 0.5895 19 ± 2 3.7 × 103 ± 2.0 × 102 45.141 ± 0.004 2.0 × 102 +33
−28 8.9 × 102 +20

−6.4 × 102

587731513146736818 0.5776 1.5 × 102 ± 12 3.6 × 103 ± 1.4 × 103 44.39 ± 0.01 60+7
−6 95 +41

−36

587731513150079130 0.5832 29 ± 4 3.5 × 103 ± 6.4 × 102 44.28 ± 0.01 50 +6
−5 53 +1.5 × 102

−40

587731513150210254 0.5667 21 ± 2 5.5 × 103 ± 8.6 × 102 44.29 ± 0.04 51 +8
−7 97 +1.1 × 102

−83

587731513151455344 0.5911 16 ± 5 2.3 × 103 ± 5.3 × 102 44.51 ± 0.01 73 +10
−8 37 +2.6 × 102

−18

587731513153683711 0.5909 55 ± 5 6.1 × 103 ± 2.3 × 103 44.37 ± 0.01 58 +7
−6 37 +2.0 × 102

−22

587731513154535595 0.5623 11 ± 6 3.5 × 103 ± 1.3 × 103 44.11 ± 0.03 38+5
−4 40 +1.7 × 102

−30

587731513157746873 0.5766 29 ± 3 6.1 × 103 ± 6.8 × 102 44.53 ± 0.01 76+10
−9 56 +2.9 × 102

−35

587731514220544089 0.5699 93 ± 8 8.2 × 103 ± 3.1 × 103 44.26 ± 0.04 49+8
−6 97 +80

−83

587731514231226522 0.5561 26 ± 4 3.3 × 103 ± 4.3 × 102 44.43 ± 0.01 64+8
−7 72 +2.2 × 102

−54

587734304876593453 0.5773 58 ± 11 3.8 × 103 ± 2.7 × 103 44.21 ± 0.03 46+6
−5 33 +1.5 × 102

−21

587734304880656528 0.5856 68 ± 29 19.5 × 103 ± 5.9 × 103 44 ± 8 (?) 20 30 +52
−24

587734305416413383 0.5758 1.2 × 102 ± 31 6.8 × 103 ± 4.3 × 103 44.33 ± 0.02 55 +7
−6 461.1 × 102+

−31

588015507662635090 0.5675 57 ± 8 4.5 × 103 ± 5.5 × 102 44.40 ± 0.01 61 +7
−6 36+2.2 × 102

−20

588015507681509558 0.5645 86 ± 33 1.3 × 103 ± 6.0 × 103 43.9 ± 0.1 27 +8
−6 21+1.0 × 102

−13

588015507682033872 0.5891 30 ± 5 4.3 × 103 ± 3.6 × 102 44.4 ± 0.01 67 +8
−7 95+1.8 × 102

−77

588015508190068915 0.5777 58 ± 6 4.4 × 103 ± 2.1 × 103 44.29 ± 0.04 51+8
−7 55+1.6 × 102

−41

588015508191903965 0.5647 27 ± 6 2.8 × 103 ± 7.8 × 102 44.31 ± 0.02 53 +6
−6 52+1.7 × 102

−38

588015508196491368 0.5728 33 ± 5 2.8 × 103 ± 5.2 × 102 44.29 ± 0.02 50 +6
−5 4.4 × 102 +1.7 × 102

−24
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Table 3
(Continued)

Objecta zb EW(Mg ii)/Åc FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

588015508197802108 0.5755 1.1 × 102 ± 41 9.0 × 103 ± 7.5 × 102 44.31 ± 0.05 53 +10
−8 1.7 × 102 +67

−1.2 × 102

588015508200489107 0.5576 44 ± 5 3.2 × 103 ± 4.4 × 102 44.30 ± 0.02 52 +6
−5 84+1.3 × 102

−70

588015508207567019 0.5582 66 ± 4 7.8 × 103 ± 6.3 × 102 44.40 ± 0.04 61 +10
−9 29+1.3 × 102

−13

588015508211630268 0.5736 48 ± 18 8.4 × 103 ± 2.3 × 103 44.09 ± 0.07 37 +8
−6 22+1.3 × 102

−13

588015508736966847 0.5576 16 ± 3 3.4 × 103 ± 6.1 × 102 44.41 ± 0.01 62+7
−7 50+2.3 × 102

−32

588015508742865130 0.5749 45 ± 4 5.2 × 103 ± 2.8 × 103 44.30 ± 0.03 52 +7
−86 1.3 × 102 +85

−67

588015508745486547 0.5646 82 ± 5 3.9 × 103 ± 7.1 × 102 44.41 ± 0.03 62 +9
−8 1.5 × 102 +1.1 × 102

−98

588015508747780246 0.5574 40 ± 4 5.6 × 103 ± 5.7 × 102 44.11 ± 0.02 38 +4
−4 39+1.2 × 102

−29

588015508756234443 0.5748 33 ± 5 6.9 × 103 ± 8.9 × 102 44.21 ± 0.03 45 +6
−5 184+0.15

−1.7 × 102

588015508756234590 0.5684 40 ± 8 2.8 × 103 ± 4.3 × 103 44.33 ± 0.04 55 +9
−8 45+2.0 × 102

−29

588015509265449124 0.5854 23 ± 5 6.1 × 103 ± 1.6 × 103 44.21 ± 0.02 45 +6
−5 61+1.2 × 102

−49

588015509267021941 0.5555 63 ± 13 11.1 × 103 ± 2.4 × 103 44.23 ± 0.031 46+5
−7 42 +1.5 × 102

−30

588015509268660273 0.5599 33 ± 1 4.3 × 103 ± 3.2 × 102 45.1424 ± 0.005 2 × 102 +34
−29 2.2 × 102 +5.9 × 102

−1.7 × 102

588015509269315709 0.57 24 ± 2 6.9 × 103 ± 1.6 × 103 44.39 ± 0.06 60 +12
−10 1.9 × 102 +82

−1.7 × 102

588015509282947197 0.559 45 ± 9 5.8 × 103 ± 1.4 × 103 44.28 ± 0.02 50 +6
−6 21+2.0 × 102

−7

588015509287928008 0.5641 39 ± 4 3.3 × 103 ± 6.9 × 102 44.31 ± 0.02 52+6
−5 68+1.7 × 102

−53

588015509822832766 0.5582 58 ± 7 2.9 × 103 ± 8.8 × 102 44.09 ± 0.02 37 +4
−4 24+1.3 × 102

−14

588015510343516323 0.5783 106 ± 8 4.9 × 103 ± 6.3 × 102 44.29 ± 0.02 51 +7
−6 94+78

−57

588015510360883275 0.5691 38 ± 1 4.6 × 103 ± 8.7 × 102 45.653 ± 0.005 4.6 × 102 +99
−81 1.2 × 103 +5 × 102

−65

588015510367764698 0.5775 87 ± 22 4.5 × 103 ± 1.4 × 103 44.236 ± 0.07 47 +10
−8 87+61

−32

Notes.
a headobjid from SDSS tables.
b Redshift.
c Rest frame equivalent width of broad line.
d FWHM of broad line.
e Computed from Kaspi relation, in rest frame.
f Own computation from all points within the 68% CI, in rest frame.

the following relationships for the optical regime:

log MBH,Vestergaard1 = log

((
FWHM(Hβ)

1000 km s−1

)2

×
(

λLλ(5100 Å)

1044 erg s−1

)0.50
⎞
⎠ + (6.91 ± 0.02) (42)

log MBH,Vestergaard2 = log

((
FWHM(Hβ)

1000 km s−1

)2

×
(

LHβ

1042 erg s−1

)0.63
)

+ (6.67 ± 0.03). (43)

Additional relationships exist for the UV, which cannot be
applied here because no line widths are available from SDSS
S82 data. They are given in Vestergaard & Peterson (2006).

For comparing to the masses from the Vestergaard relations,
we calculate the reverberation-mapping based MBH by using
Equation (1). We set f = 1, and so we get

MBH,rev = 0.195

(
FWHM(Hβ)

km s−1

)2
τdelay

days
M�. (44)

To determine the proportionality constant to the relation-
ships, we adopt the form MBH ∝ MBH,Vestergaard1 and MBH ∝
MBH,Vestergaard2.

We calculated the posterior probability distributions from
evaluating Equation (23) projected as a histogram, because
we marginalize over the flux scaling factors e and s. This
was done for different binning classes because we assume that
τdelay/τdelay,exp = f (L, z, EWline).

For comparing to the relations (42) and (43), we binned by z
according to our subsample Tables 2–5. We evaluated 29 light
curves in the redshift range z = 0.225–0.291, with i band: Hα, z
band: continuum. Seventeen light curves out of this range were
also evaluated with r band: Hβ, Hγ (plus some other), g band:
continuum. We evaluated 68 light curves in the redshift range
z = 0.555–0.591 with g-band Mg ii, r: continuum. We evaluated
111 light curves in the redshift range z = 0.592–0.6999, with
g-band Mg ii (Fe ii λ2600), r continuum. The redshift range
z = 0.7–0.846 was evaluated with g-band Mg ii (Fe ii λ2600),
r continuum for 115 light curves.

In Figures 8(e)–(f) we show the deviations of our
reverberation-based ensemble MBH estimates from those of the
Vestergaard relations as a function of z. Our result again shows
ensemble estimates larger than those by the scaling relationships
from Vestergaard by a factor of about 1.7, but with slightly larger
deviations.
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Table 4
Sample 3 Properties and Reverberation Mapping Results z = 0.592–0.6999, with g Band: Mg ii, r Band: Continuum

Objecta zb EW(Mg ii)/Åc FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

587730845814686076 0.6019 40 ± 6 3.6 × 103 ± 6.1 × 102 44.18 ± 0.04 43 +7
−6 54 +1.4 × 102

−41

587730846349919079 0.5988 85 ± 15 4.6 × 103 ± 2.1 × 103 44.13 ± 0.04 40 +6
−5 91+88

−74

587730847429689592 0.6615 35 ± 7 1.2 × 103 ± 2.9 × 103 44.19 ± 0.06 43 +9
−7 46+1.5 × 102

−33

587730847430148472 0.6212 3.8 × 102 ± 97 42.44 ± 0.09 44.25 ± 0.01 48+5−5 29+1.4 × 102

−15

587730847960662320 0.6163 70 ± 8 2.0 × 103 ± 2.2 × 103 44.34 ± 0.02 55 +7
−6 4+46

−29

587731172231545105 0.6809 30 ± 1 1.9 × 103 ± 1.1 × 103 45.21 ± 0.008 2.3 × 102 +41
−34 4.5 × 102 +5.7 × 102

−3.9 × 102

587731173842093154 0.6533 25 ± 5 5.0 × 103 ± 1.7 × 103 44.55 ± 0.08 77 +20
−15 17+3.3 × 102

−5

587731174915507603 0.6074 31 ± 7 7.6 × 103 ± 2.1 × 103 44.28 ± 0.02 50 +6
−5 56+1.7 × 102

−42

587731185656004677 0.8422 28 ± 3 5.3 × 103 ± 2.7 × 103 44.9 ± 0.1 1.5 × 102 +63
−42 2.3 × 102 +4.4 × 102

−1.9 × 102

587731185660657782 0.6964 17 ± 3 3.3 × 103 ± 5.3 × 102 45,05 ± 0.01 1.7 × 102 +30
−25 2.3 × 102 +5.6 × 102

−1.8 × 102

587731185663410412 0.606 14 ± 3 4.8 × 103 ± 3.2 × 103 44.35 ± 0.07 56 +12
−10 72+1.8 × 102

−56

587731185665507634 0.5981 93 ± 30 3.6 × 103 ± 2.1 × 103 44.21 ± 0.02 45 +5
−5 20+1.8 × 102

−7

587731185673044112 0.619 41 ± 6 3.1 × 103 ± 2.4 × 103 44.33 ± 0.02 55 +7
−6 51+2.0 × 102

−35

587731186197856351 0.6161 18 ± 3 1.7 × 103 ± 6.5 × 102 45.027 ± 0.007 1.7 × 102 +27
−23 98+6.6 × 102

−51

587731186201002148 0.6958 26 ± 4 2.7 × 103 ± 7.3 × 102 44.31 ± 0.05 52 +9
−8 53+1.8 × 102

−38

587731186206113952 0.6321 30 ± 5 3.1 × 103 ± 5.0 × 102 44.35 ± 0.05 56 +10
−8 55+2 × 102

−39

587731186724373007 0.6546 41 ± 7 4.4 × 103 ± 1.7 × 103 44.26 ± 0.03 49 +6
−6 90+1.1 × 102

−75

587731186740428908 0.6131 65 ± 6 8.0 × 103 ± 1.2 × 103 44.32 ± 0.03 54 +8
−7 2.4 × 102 +0.6

−2.3 × 102

587731186743443659 0.599 15 ± 6 1.4 × 103 ± 1.7 × 103 44.33 ± 0.02 55+7
−6 33+2.1 × 102

−17

587731186744492204 0.6321 44 ± 4 3.9 × 103 ± 5.2 × 102 44.28 ± 0.03 51+7
−6 100+1.3 × 102

−86

587731187263209489 0.6436 25 ± 3 1.7 × 103 ± 6.5 × 102 45.089 ± 0.005 1.9 × 102 +30
−26 4.7 × 102 +3.7 × 102

−3.7 × 102

587731187280183499 0.6815 66 ± 15 1.9 × 103 ± 6.1 × 102 44.20 ± 0.07 44+9
−7 30+9.8 × 102

−18

587731187281166449 0.609 25 ± 6 5.2 × 103 ± 1.8 × 103 44.36 ± 0.02 57+8
−7 80+1.8 × 102

−63

587731187281494159 0.6572 46 ± 3 4.8 × 103 ± 4.1 × 102 44.22 ± 0.04 45 +7
−6 45+1.6 × 102

−32

587731187814236291 0.6965 67 ± 6 8.9 × 103 ± 2.5 × 103 44.34 ± 0.05 55 +10
−8 44+1.8 × 102

−28

587731187814432903 0.683 16 ± 4 3.4 × 103 ± 5.8 × 102 44.32 ± 0.03 53 +7
−6 45+2.0 × 102

−29

587731511534092414 0.6576 61 ± 5 7.1 × 103 ± 9.6 × 102 44.43 ± 0.05 64 +13
−10 1.9 × 102 +1.0 × 102

−1.6 × 102

587731511541039324 0.6841 64 ± 13 1.6 × 103 ± 1.6 × 103 44.43 ± 0.06 64 +14
−11 1.3 × 102 +1.6 × 102

−93

587731511543464064 0.66 23 ± 2 2.9 × 103 ± 6.3 × 102 44.49 ± 0.04 76+12
−10 2.0 × 102 +1.2 × 102

−1.8 × 102

587731512068276412 0.6301 27 ± 7 3.8 × 103 ± 3.5 × 103 44.32 ± 0.05 53 +10
−8 15+2.3 × 102

−5

587731512070439082 0.6885 46 ± 9 4.5 × 103 ± 6.2 × 102 44.28 ± 0.06 50 +10
−8 66+1.5 × 102

−52

587731512080990324 0.642 84 ± 7 4.9 × 103 ± 9.1 × 102 44.45 ± 0.03 66 +11
−9 1.2 × 102 +1.7 × 102

−84

587731512082890897 0.5928 43 ± 7 2.6 × 103 ± 5.9 × 102 44.3 ± 0.1 48 +14
−11 36+1.8 × 102

−22

587731512083284109 0.6544 28 ± 3 3.9 × 103 ± 3.8 × 102 44.46 ± 0.06 67+15
−12 3–0 × 102 +8

−2.8 × 102

587731512083873838 0.6065 37 ± 1 3.5 × 103 ± 2.9 × 102 45.074 ± 0.009 1.8 × 102 +31
−26 52+5.0 × 102

−1.3

587731512607899778 0.675 38 ± 4 3.3 × 103 ± 1.3 × 103 44.3 ± 0.03 46+6
−5 26+1.8 × 102

−13

587731512607965328 0.6712 62 ± 5 5.5 × 103 ± 3.4 × 103 44.40 ± 0.03 61+10
−8 83+19 × 102

−64

587731512617468016 0.6449 135 ± 7 6.5 × 103 ± 4.6 × 102 44.42 ± 0.02 62+9
−7 1.3 × 102 +31

−51

587731512619106413 0.6371 43 ± 6 4.3 × 103 ± 6.7 × 102 44.2 ± 0.1 41+15
−10 69+1.2 × 102

−58

587731512621662350 0.6197 38 ± 5 4.2 × 103 ± 7.4 × 102 44.45 ± 0.01 66+8
−7 48+2.5 × 102

−29

587731512621793356 0.6018 131 ± 13 8.3 × 103 ± 2.2 × 103 44.34 ± 0.03 55 +8
−7 65+1.8 × 102

−50

587731513142935682 0.6122 62 ± 7 5.0 × 103 ± 1.4 × 103 44.30 ± 0.02 52 +7
−6 85+1.5 × 102

−70

587731513146671274 0.6112 25 ± 5 9.2 × 103 ± 3.0 × 103 44.36 ± 0.03 57 +8
−7 44 +2.1 × 102

−29

587731513149423729 0.6874 29 ± 4 5.1 × 103 ± 1.5 × 103 44.46 ± 0.02 68+9
−8 50 +2.6 × 102

−31

587731513150668937 0.6234 39 ± 4 4.1 × 103 ± 9.7 × 102 44.45 ± 0.02 66 +9
8− 100 +2.0 × 102

−79

587731513151062143 0.633 32 ± 6 2.3 × 103 ± 4.8 × 102 44.32 ± 0.05 53 +9
−8 3.4 +2.4 × 102

−19
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Table 4
(Continued)

Objecta zb EW(Mg ii)/Åc FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

587731513152241754 0.6325 2.0 × 102 ± 13 5.0 × 103 ± 4.2 × 102 44.27 ± 0.05 49 +8
−7 33 +45

−19

587731513152438527 0.6967 36 ± 8 1.6 × 104 ± 4.7 × 103 44.18 ± 0.03 43 +6
−5 1.2 × 102 +77

−1.0 × 102

587731513153683593 0.6271 61 ± 4 1.9 × 103 ± 1.4 × 103 44.36 ± 0.02 57+8
−7 1.4 × 102 +1.0 × 102

−1.2 × 102

587731513154600973 0.6385 17.5 ± 0.6 3.3 × 103 ± 75 44.763 ± 0.002 5.5 × 102 +1.2 × 102

−99 4.3 × 102 +1.2 × 103

−2.8 × 102

587731513158008994 0.6428 37 ± 2 6.2 × 103 ± 7.8 × 102 44.47 ± 0.02 69+9
−8 1.0 × 102 +2.1 × 102

−82

587731513159712875 0.6827 25 ± 1 4.4 × 103 ± 3.2 × 102 44.4737 ± 0.007 3.4 × 102 +70
−57 2.3 × 102 +1.3 × 103

−1.3 × 102

587731513680855187 0.6529 62 ± 8 6.1 × 103 ± 1.8 × 103 44.31 ± 0.02 52 +6
−5 2.0 × 102 +38

−1.4 × 102

587731513682952258 0.5941 46 ± 4 5.1 × 103 ± 1.5 × 103 44.36 ± 0.02 57 +8
−7 2.0 × 102 +63

−1.8 × 102

587731513684983978 0.6064 40 ± 4 5.6 × 103 ± 9.4 × 102 44.53 ± 0.08 75 +20
−15 1.1 × 102 +2.3 × 102

−83

587731513685115064 0.6885 30 ± 4 1.6 × 104 ± 5.5 × 103 44.3 ± 0.1 56+22
−15 45+2.0 × 102

−29

587731513685311641 0.6935 65 ± 11 8.2 × 103 ± 3.2 × 103 44.49 ± 0.01 70 +9
−8 51 73+

−31

587731513686032593 0.5944 27 ± 4 1.1 × 104 ± 1.7 × 103 44.48 ± 0.01 69 +9
−8 50 +2.6 × 102

−31

587731513686884468 0.6153 26 ± 3 1.9 × 104 ± 1.4 × 103 44.28 ± 0.02 50 +6
−6 45 +1–8 × 102

−30

587731513691930901 0.6923 47 ± 9 1.8 × 103 ± 2.9 × 103 44.39 ± 0.02 60 +8
−7 39 +2.3 × 102

−22

587731513693438220 0.6186 58 ± 6 1.9 × 103 ± 1.8 × 103 44.32 ± 0.03 63 +7
−6 8952

−58

587731513695469663 0.633 33 ± 1 4.9 × 103 ± 5.5 × 102 44.101 ± 0.002 1.9 × 102 +30
−26 71 +6.6 × 102

−18

587731514221789350 0.6005 59 ± 10 3.4 × 103 ± 4.1 × 103 44.43 ± 0.02 64 +9
−7 73 +2.2 × 102

−55

587731514224148656 0.6164 31 ± 4 5.6 × 103 ± 1.8 × 103 44.23 ± 0.03 46 +6
−5 52+2.6 × 102

−38

587731514225393828 0.6003 35 ± 8 3.8 × 103 ± 1.2 × 103 44.50 ± 0.02 71 +10
−8 2.0 × 102 +1.2 × 102

−1.8 × 102

587731514228342988 0.6654 22 ± 3 6.0 × 103 ± 9.4 × 102 44.3 ± 0.2 54 +22
−15 49 +1.9 × 102

−35

587731514228408478 0.6102 38 ± 6 8.3 × 103 ± 3.6 × 103 4.38 ± 0.05 59+11
−9 34+2.3 × 102

−17

587734303270109310 0.6593 21 ± 11 6.0 × 103 ± 7.6 × 103 44.22 ± 0.05 46 +8
−7 62 +1.4 × 102

−49

587734303803179306 0.6951 37 ± 2 3.9 × 103 ± 4.0 × 102 44.952 ± 0.006 148 +23
−20 1.9 × 102 +4.8 × 102

−1.5 × 102

587734303806390551 0.6416 66 ± 7 6.0 × 103 ± 1.3 × 103 44.13 ± 0.06 40+7
−6 9.8+81

−46

587734303807045647 0.6589 7 ± 1 6.3 × 103 ± 3.0 × 102 44.998 ± 0.005 1.6 × 102 +25
−22 4.3 × 102 +2.9 × 102

−3.8 × 102

587734304339460348 0.6076 49 ± 10 3.0 × 103 ± 3.8 × 102 44.33 ± 0.01 55+6
−5 50+2.0 × 102

−35

587734304875085974 0.6712 33 ± 2 11244.4 ± 6.6 × 102 45.0 ± 0.03 2–5 × 102 +60
−47 1.1 × 103 +0.6

−8.1 × 102

587734305414316071 0.6837 21 ± 2 3.3 × 103 ± 1.1 × 103 44.94 ± 0.03 1.5 × 102 +29
−23 4.4 × 102 +2.2 × 102

−4.0 × 102

587734305680261334 0.6823 36 ± 1 7.2 × 103 ± 1.6 × 103 45.13 ± 0.01 2.0 × 102 +36
−30 4.2 × 102 +4.6 × 102

−1

588015507655819521 0.603 17 ± 4 1.6 × 103 ± 2.3 × 102 44.34 ± 0.02 55+7
−6 59+1.9 × 102

−43

588015507658440900 0.6012 54 ± 11 3.1 × 103 ± 7.9 × 102 44.09 ± 0.04 37+5
−4 48+1.2 × 102

−38

588015507662110749 0.6714 26.6 ± 0.8 4.6 × 103 ± 3.3 × 102 45.301 ± 0.007 2.6 × 102 +49
−41 6.7 × 102 +5.1 × 102

−6.0 × 102

588015507671023717 0.6882 58 ± 5 7.3 × 103 ± 7.0 × 102 44.2 ± 0.2 43+24
−14 119.888+73.0453

−77.8574

588015508191838443 0.6291 35 ± 9 2.2 × 103 ± 1.3 × 103 44.32 ± 0.03 52+7
−6 68+1.7 × 102

−53

588015508198326378 0.6754 38 ± 5 7.7 × 103 ± 3.1 × 103 44.32 ± 0.05 54+10
−8 53+1.9 × 102

−38

588015508199506219 0.6185 30 ± 4 3.3 × 103 ± 9.6 × 102 44.22 ± 0.03 46+6
−5 60.4664+147.326

−47.408

588015508205404302 0.6228 102 ± 17 4.9 × 103 ± 1.5 × 103 44.25 ± 0.02 48+6
−5 13.8029+149.6344

−0.1504

588015508210188443 0.6364 21 ± 6 5.4 × 103 ± 1.1 × 103 44 ± 0.05 51+10
−8 58.7275+172.6071

−43.8074

588015508215496798 0.6136 39 ± 6 3.4 × 103 ± 5.0 × 103 44.500 ± 0.007 72+8
−8 58+2.7 × 102

−38

588015508215693543 0.6022 85 ± 9 43 ± 0.2 44.55 ± 0.01 78+10
−9 1.0 × 102 +43

−56

588015508219691244 0.6518 45 ± 4 1.7 × 103 ± 1.1 × 103 44.49 ± 0.002 70+10
−8 2.2 × 102 +97

−2.0 × 102

588015508736180263 0.6897 106 ± 4 1.2 × 103 ± 2.0 × 103 45.00 ± 0.03 1.6 × 102 +31
−25 3.3 × 102 +4.0 × 102

−2.8 × 102

588015508736245912 0.6976 33 ± 4 5.1 × 103 ± 3.2 × 103 44.3 ± 0.3 51+35
−19 92+1.4 × 102

−77

588015508743192685 0.6202 37 ± 4 4.9 × 103 ± 1.3 × 103 44.345 ± 0.03 56+8
−7 77+1.8 × 102

−60

588015508746797215 0.5951 27 ± 4 4.6 × 103 ± 5.3 × 102 44.34 ± 0.03 56+8
−7 77+1.8 × 102

−60

588015509274886234 0.6462 70 ± 8 7.3 × 103 ± 1.3 × 103 44.32 ± 0.06 54+11
−9 1.9 × 102 +51

−1.7 × 102
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Table 4
(Continued)

Objecta zb EW(Mg ii)/Åc FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

588015509278884004 0.623 52 ± 5 4.0 × 103 ± 6.4 × 102 44.33 ± 0.02 55+7
−6 1.3 × 102 +1.2 × 102

−1.1 × 102

588015509286158482 0.6057 22 ± 4 3.6 × 103 ± 1.7 × 102 44.40 ± 0.01 61+7
−7 75+2.0 × 102

−57

588015509287141539 0.6501 29 ± 6 2.8 × 103 ± 9.3 × 102 44.27 ± 0.02 49+7
−6 23+2.0 × 102

−9

588015509289238698 0.6065 35 ± 6 3.8 × 103 ± 1.5 × 103 44.26 ± 0.05 48+9
−8 7+1.8 × 102

−23

588015509291663524 0.6058 58 ± 6 5.4 × 103 ± 8.1 × 102 44.19 ± 0.02 44+5
−4 36+1.6 × 102

−24

588015509292056718 0.5919 1.4 × 102 ± 22 7.7 × 103 ± 1.8 × 103 44.42 ± 0.01 63+7
−6 1.0 × 102 +35

−41

588015509293957240 0.6138 14 ± 3 2.8 × 103 ± 3.9 × 102 44.28 ± 0.01 50+6
−5 35+1.9 × 102

−21

588015509805989986 0.6912 28 ± 4 2.2 × 103 ± 1.1 × 103 44.27 ± 0.05 50+9
−7 211.7124+12.7619

−196.2287

588015509815689306 0.6095 66 ± 6 4.8 × 103 ± 2.1 × 103 44.23 ± 0.02 46+6
−5 88+1.2 × 102

−75

588015509821915357 0.5961 136 ± 19 1.2 × 104 ± 3.6 × 103 44.27 ± 0.03 49+7
−6 55+1.7 × 102

−41

588015509824143507 0.6262 101 ± 15 1.2 × 104 ± 3.2 × 103 44.29 ± 0.03 51+7
−6 33+2.0 × 102

−17

588015509825716274 0.663 59 ± 5 4.3 × 102 ± 9.8 × 102 44.47 ± 0.04 69+13
−11 83+2.3 × 102

−64

588015510340042880 0.6359 49 ± 7 2.1 × 103 ± 7.9 × 102 44.31 ± 0.03 52+7
−6 47+1.9 × 102

−33

588015510350266371 0.6505 24 ± 2 6.1 × 103 ± 3.4 × 102 45.04 ± 0.04 1.7 × 102 +40
−32 421.0391+3.5 × 102

−3.6 × 102

588015510359244938 0.6796 27 ± 3 2.8 × 103 ± 2.1 × 103 44.21 ± 0.09 45+11
−9 68+1.30 × 102

−55

588015510361669834 0.6585 28 ± 4 2.4 × 103 ± 1.8 × 103 44.36 ± 0.01 57+7
−6 21.009+236.4755

−4.894

588015510362325105 0.6378 29 ± 3 2.6 × 103 ± 1.0 × 103 44.53 ± 0.02 75+11
−9 82+2.6 × 102

−60

588015510362914849 0.6619 23 ± 1 3.2 × 103 ± 5.8 × 102 44.984 ± 0.012 1.6 × 102 +26
−22 4.4 × 102 +2.7 × 102

−3.9 × 102

588015510366912891 0.6242 1.2 × 102 ± 12 1.8 × 104 ± 1.5 × 103 43.91 ± 0.08 28+6
−5 72+53

−43

Notes.
a headobjid from SDSS tables.
b Redshift.
c Rest frame equivalent width of broad line.
d FWHM of broad line.
e Computed from Kaspi relation, in rest frame.
f Own computation from all points within the 68% CI, in rest frame.

6.3. Accuracy of the RBLR − L and MBH − L Estimates

As illustrated in Figure 5, time delays can only be ro-
bustly recovered if they fall into certain windows that are
set by the S82 sampling. We now check the time delays in-
ferred for the S82 from our analysis post facto against this
criterion.

For this purpose we made a mean histogram of the inferred
ensemble time lags for all the 323 light curves used to calculate
the ensemble relation (Figure 8). For each of these objects, we
used their UV luminosity and line width in conjunction with
the Kaspi relation—scaled by the factor from Figure 8(a) for
objects in any given bin—to predict their most likely τdelay.
This procedure results in a histogram of the inferred time delay
τdelay,predicted × f actor for the objects in each bin, which
are shown as colored histograms in the panels of Figure 9.
Specifically, the scaling factors we used were the most likely
ones for each bin, for example, 3.2 for Figure 9(a), 1.6 for
Figure 9(b), 1.7 for Figure 9(c), 1.6 for Figure 9(d), 1.7 for
Figure 9(e).

Assuming that the Kaspi relation with a factor of one is true,
the τdelay should fall into a region where we can recover them,
as this was one of the selection criteria. If the inferred scaling
factors from our analysis were true, the implied delays fall into
the tails of the distribution. In this case, correct inference may
occur, but its recovery robustness is not particularly likely. From

further analysis, most of the individual τdelay fall in regions
were less than 50 percent of the time delays are assumed to be
correctly calculated.

Additionally, reverberation-based masses are typically un-
certain by a factor of f = 2–3. The absolute accuracy of the
single-epoch mass estimates by Vestergaard (2002) is stated to
be between a factor of 3.6 and 4.6. In addition, one has to keep
in mind that the scaling relations and their uncertainties are of
statistical nature. Any given single estimate from a RBLR −L or
MBH − L scaling relation can be off by some factor. Therefore
it should not be trusted in cases where high accuracy is needed.
Such relations are, however, useful tools for application to large
statistical samples.

7. CONCLUSION AND DISCUSSION

For the purpose of evaluating sparsely sampled photometric
data, we implemented an advanced stochastical reverberation
mapping algorithm in order to find correlated variations in a
purely continuum and a continuum plus emission line band. This
method is based on an approach for spectroscopic reverberation
mapping by Rybicki & Kleyna (1994) and Zu et al. (2011),
and extended for being capable of handling sparsely sampled
multi-epoch photometric data in combination with constraining
single-epoch spectroscopy. This enables us to use the data from
available long-term photometric surveys, where we explored
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Table 5
Sample 4 Properties and Reverberation Mapping Results z = 0.7–0.846, with g Band: Mg ii, r Band: Continuum

Objecta zb EW(Mg ii)/Å c FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

587730845818355869 0.7934 41 ± 2 8.1 × 103 ± 6.0 × 102 45.12 ± 0.02 1.9 × 102 +38
−32 57+49

−2

587730846355554516 0.8009 93 ± 16 1.2 × 103 ± 1.5 × 103 44.1 ± 0.2 39+22
−13 88+77

−76

587730847426674879 0.7877 31 ± 3 9.1 × 103 ± 9.6 × 102 44.96 ± 0.02 1.5 × 102 +28
−24 92+6.0 × 102

−49

587730847429689518 0.8232 24 ± 2 3.8 × 103 ± 7.3v 45.06 ± 0.03 1.7 × 102 +38
−30 7.7 × 102 +27

−7.2 × 102

587731512612094070 0.8134 25 ± 3 2.3 × 103 ± 3.7 × 102 44.98 ± 0.05 1.5 × 102 +38
−30 4.2 × 102 +2.8 × 102

−3.7 × 102

587730847966953841 0.7996 44 ± 5 6.6 × 103 ± 3.7 × 103 44.1 ± 0.1 40+11
−8 37+1.5 × 102

−25

587731185113759904 0.704 53 ± 5 1.8 × 104 ± 1.6 × 103 45.31 ± 0.02 2.7 × 102 +57
−46 1.2 × 103 +0.6

−1.1 × 103

588015509825912950 0.8199 24 ± 1 3.8 × 103 ± 4.6 × 102 45.09 ± 0.05 1.9 × 102 +49
−38 2.2 × 102 +6.2 × 102

−1.7 × 102

587731185115070898 0.8356 43 ± 3 8.7 × 103 ± 2.7 × 103 44.2 ± 0.1 43+15
−11 15+1.7 × 102

−3

587731185117233542 0.8321 48 ± 4 3.6 × 103 ± 2.5 × 103 45.18 ± 0.03 2.13 × 102 +48
−38 2.3 × 102 +4.0 × 102

−1.7 × 102

587731185126146205 0.8081 41 ± 5 7.3 × 103 ± 4.2 × 103 44.3 ± 0.1 50+16
−11 46+1.8 × 102

−34

587731185135321096 0.8404 38 ± 2 6.0 × 103 ± 2.6 × 103 45.00 ± 0.08 1.6 × 102 +48
−36 1.9 × 102 +5.4 × 102

−1.2 × 103

587731185135910996 0.7563 44 ± 2 2.9 × 103 ± 7.2 × 102 44.977 ± 0.008 1.5 × 102 +25
−21 698.7417+0.7402

−648.7547

587731185653711180 0.705 29 ± 5 5.7 × 103 ± 1.6 × 102 44 ± 0.1 52+18
−12 50+1.8 × 102

−35

587731185662296109 0.755 37 ± 1 4.4 × 103 ± 2.3 × 102 45.31 ± 0.03 2.7 × 102 +61
−49 3.8 × 102 +8.2 × 102

−3.0 × 102

587731185666293846 0.7643 44 ± 2 3.8 × 103 ± 3.0 × 102 45.300 ± 0.007 2.6 × 102 +49
−41 7.9 × 102 +3.9 × 102

−7.0 × 102

587731186187632758 0.7449 44 ± 3 8.7 × 103 ± 1.8 × 103 45.068 ± 0.006 1.8 × 102 +29
−25 3.2 × 102 +41

−1.9 × 102

587731186189664401 0.8069 27 ± 2 4.7 × 103 ± 6.3 × 102 45.24 ± 0.05 2.4 × 102 +66
−50 4.2 × 102 +6.5 × 102

−3.5 × 102

587731186190975111 0.7309 35 ± 2 5.8 × 103 ± 7.2 × 102 45.13 ± 0.02 1.9 × 102 +37
−31 6.3 × 102 +2.6 × 102

−5.5 × 102

587731186192285977 0.7585 47 ± 6 9.8 × 103 ± 9.6 × 102 43.94 ± 0.09 29+6
−5 30+1.0 × 102

−21

587731186195693586 0.7732 24 ± 2 2.3 × 103 ± 5.1 × 102 45.20 ± 0.01 2.2 × 102 +40
−34 8.0 × 102 +1.9 × 102

−7.4 × 102

587731186201329747 0.743 33 ± 2 4.5 × 103 ± 4.7 × 102 45.00 ± 0.06 1.6 × 102 +42
−32 6.5 × 102 +81

−5.0 × 102

587731186204803148 0.7334 31 ± 2 3.0 × 103 ± 7.6 × 102 45.0 ± 0.1 1.7 × 102 +61
−43 71.215+71.591

−23.309

587731186736103673 0.8103 41 ± 6 · · · 44.89 ± 0.03 134+27
−22 4.2 × 102 +1.9 × 102

−3.8 × 102

587731186741936203 0.7477 22 ± 2 4.9 × 103 ± 6.6 × 102 44.92 ± 0.07 142+41
−31 6.1 × 102 +27

−5.6 × 102

587731187283263580 0.7264 19.8 ± 0.6 2.5 × 103 ± 7.2 × 102 45.200 ± 0.009 2.2 × 102 +40
−34 4.1 × 102 +5.9 × 102

−3.4 × 102

587731187801391447 0.8222 93 ± 12 1.4 × 104 ± 1.1 × 104 44 ± 8 (?) 42 48+75
−36

587731187803422729 0.7409 28 ± 2 1.9 × 103 ± 3.6 × 102 45.18 ± 0.04 2.1 × 102 +53
−42 5.4 × 102 +4.3 × 102

−4.7 × 102

587731187805061144 0.8076 28 ± 2 3.3 × 103 ± 8.5 × 102 44.93 ± 0.08 1.4 × 102 +43
−32 1.2 × 102 +5.3 × 102

−77

587731187817054255 0.7286 31 ± 2 5.4 × 103 ± 1.1 × 103 5.290 ± 0.008 2.6 × 102 +48
−40 4.2 × 102 +1.1 × 102

−3.4 × 102

587731187817185350 0.8237 168 ± 9 1.2 × 103 ± 7.3 × 102 44.949 ± 0.008 1.5 × 102 +23
−20 1.0 × 102 +4.2 × 102

−59

587731511533568075 0.7067 25 ± 2 3.0 × 103 ± 7.5 × 102 45.13 ± 0.02 2–0 × 102 +39
−32 2.3 × 102 +6.7 × 102

−1.7 × 102

587731511533568176 0.7114 31 ± 6 7.7 × 103 ± 8.5 × 102 45.030 ± 0.009 1.7 × 102 +28
−24 20 × 102 +5.6 × 102

−1.5 × 102

587731511537041576 0.7047 26 ± 3 5.6 × 103 ± 2.1 × 103 44.42 ± 0.07 63+14
−11 60+2.2 × 102

−43

587731511540187278 0.727 67 ± 8 5.2 × 103 ± 1.1 × 103 44.23 ± 0.08 47+11
−8 84+1.3 × 102

−70

587731511540514930 0.7746 30 ± 4 5.2 × 103 ± 8.0 × 102 44.5 ± 0.2 66+36
−22 32+2.7 × 102

−13

587731511545692429 0.8288 27 ± 6 8.7 × 103 ± 3.2 × 103 43.9 ± 0.4 26+25
−12 24+93

−17

587731511547002980 0.7609 43 ± 4 3.9 × 103 ± 1.5 × 103 44.98 ± 0.01 1.6 × 102 +26
−22 4.0 × 102 +3.0 × 102

−3.5 × 102

587731512073257137 0.7273 27 ± 3 2.0 × 103 ± 1.3 × 103 44.44 ± 0.09 65+17
−13 76+2.2 × 102

−58

587731512077516962 0.8402 39 ± 4 5.1 × 103 ± 1.5 × 103 44.3 ± 0.3 48+21
−14 2.9 × 102 +14

−1.9 × 102

587731512077975687 0.7444 40 ± 5 2.0 × 103 ± 9.2 × 102 44.39 ± 0.05 60+12
−9 66+2.0 × 102

−49

587731512335663273 0.7359 78 ± 7 4.2 × 103 ± 1.1 × 103 43.2 ± 0.2 9+4
−2 37+1

−34

587731512604688586 0.7379 96 ± 12 9.0 × 103 ± 2.6 × 103 43.90 ± 0.05 28+4
−4 12+1.1 × 102

−4

587731512613404738 0.766 35 ± 4 5.4 × 103 ± 1.3 × 103 43.8 ± 0.2 24+9
−6 38+69

−31

587731512615371027 0.7327 40.7 ± 0.7 1.3 × 103 ± 1.0 × 103 44.47 ± 0.05 68+14
−11 63+2.5 × 102

−43

587731512617599004 0.7025 33 ± 1 5.5 × 103 ± 6.3 × 102 45.12 ± 0.01 1.9 × 102 +35
−30 1.0 × 102 +33

−47
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Table 5
(Continued)

Objecta zb EW(Mg ii)/Å c FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

587731512617861317 0.8388 20 ± 1 5.7 × 103 ± 3.9 × 103 45.03 ± 0.09 1.7 × 102 +56
−40 1.9 × 102 +5.6 × 102

−1.4 × 102

587731512618319897 0.7687 28 ± 1 3.3 × 103 ± 3.4 × 102 45.616 ± 0.006 4.4 × 102 +92
−76 1.8 × 102 +59

−55

587731512618778741 0.7668 88 ± 7 2.2 × 103 ± 2.9 × 103 44.36 ± 0.06 58+12
−9 2.6 × 102 +0.1

−2.4 × 102

587731513141035048 0.7534 54 ± 1 6.3 × 103 ± 3.7 × 102 45.25 ± 0.01 2.4 × 102 +46
−38 9.0 × 102 +1.8 × 102

−5.8 × 102

587731513142214691 0.8054 16 ± 2 2.5 × 103 ± 8.4 × 102 45.20 ± 0.09 2.2 × 102 +78
−55 8.1 × 102 +2.0 × 102

−7.4 × 102

587731513144508433 0.7783 22 ± 1 3.4 × 103 ± 1.1 × 103 45.02 ± 0.02 1.6 × 102 +29
−24 4.2 × 102 +3.3 × 102

−3.7 × 102

587731513150144633 0.7741 58 ± 4 4.0 × 103 ± 1.8 × 103 44.96 ± 0.08 1.5 × 102 +46
−34 2.1 × 102 +4.7 × 102

−1.6 × 102

587731513152045207 0.79 47 ± 5 3.1 × 103 ± 1.4 × 103 44.4 ± 0.1 61+18
−13 1.0 × 102 +1.7 × 102

−86

587731513155387599 0.8394 39 ± 6 · · · 45.04 ± 0.04 1.7 × 102 +38
−31 2.0 × 102 +5.7 × 102

−1.5 × 102

587731513158991981 0.7823 25 ± 3 2.3 × 103 ± 3.8 × 103 44.45 ± 0.07 66+16
−12 53+2.5 × 102

−34

587731513409404993 0.777 29 ± 1 4.4 × 103 ± 3.8 × 102 45.57 ± 0.01 4.9 × 102 +88
−72 8.3 × 102 +4.3 × 102

−7.2 × 102

587731513681051679 0.7415 74 ± 8 1.6 × 104 ± 1.6 × 104 44.3 ± 0.1 49+19
−13 98+1.0 × 102

−84

587731513685115005 0.8033 110 ± 13 2.3 × 104 ± 1.1 × 104 43.8 ± 0.2 25+9
−6 7+1.0 × 102

−0.01

587731513692192954 0.8303 39 ± 3 · · · 44.91 ± 0.04 1.4 × 102 +31
−25 57+5.7 × 102

−18

587731514215956525 0.8074 28 ± 2 5.6 × 103 ± 1.4 × 103 44.94 ± 0.05 1.5 × 102 +36
−28 4.1 × 102 +2.5 × 102

−3.7 × 102

587731514221330585 0.7305 1.3 × 102 ± 16 3.4 × 103 ± 5.1 × 103 44.15 ± 0.08 40+9
−7 40+1.4 × 102

−26

587731514226639046 0.8088 48 ± 5 3.8 × 103 ± 1.9 × 103 44.31 ± 0.08 53+13
−10 33+1.2 × 102

−18

587734303807832105 0.8082 18 ± 2 3.1 × 103 ± 1.3 × 103 45.76 ± 0.08 5.5 × 102 +2.2 × 102

−1.5 × 102 1.2 × 102 +4.1 × 102

−1.1 × 103

587734304877183038 0.7753 24 ± 2 4.3 × 103 ± 1.2 × 103 44.95 ± 0.02 1.5 × 102 +28
−23 3.7 × 102 +3.0 × 102

−3.3 × 102

587734305415299187 0.8264 21 ± 1 2.5 × 103 ± 4.1 × 102 45.18 ± 0.04 2.1 × 102 +53
−42 1.9 × 102 +7.6 × 102

−1.3 × 102

587734305950531598 0.7226 70 ± 4 7.0 × 103 ± 5.2 × 102 45.263 ± 0.003 2.5 × 102 +43
−37 8.7 × 102 +2.4 × 102

−1.2 × 102

587734305952497968 0.7699 54 ± 6 3.2 × 103 ± 3.8 × 102 44.90 ± 0.01 1.4 × 102 +22
−19 2.0 × 102 +4.1 × 102

−1.7 × 102

587734305954922626 0.7437 29 ± 2 5.3 × 103 ± 1.2 × 103 44.94 ± 0.04 1.5 × 102 +32
−25 4.1 × 102 +2.5 × 102

−3.6 × 102

588015507653066986 0.7861 47 ± 6 2.0 × 103 ± 1.9 × 103 44.2 ± 0.1 47+15
−11 34+1.8 × 102

−20

588015507657654301 0.7675 34 ± 1 2.9 × 103 ± 1.1 × 103 45.46 ± 0.03 3.4 × 102 +81
−64 1.5 × 103 +8

−1.3 × 103

588015507660669093 0.805 30 ± 1 2.9 × 103 ± 3.7 × 102 45.00 ± 0.03 1.6 × 102 +34
−27 6.1 × 102 +1.2 × 102

−5.7 × 102

588015507661127686 0.7857 33 ± 1 4.1 × 103 ± 1.2 × 103 44.90 ± 0.03 1.4 × 102 +27
−22 2.0 × 102 +4.2 × 102

−1.6 × 102

588015507666829383 0.7533 2.5 × 102 ± 32 2.1 × 103 ± 1.5 × 102 45.08 ± 0.02 1.8 × 102 +35
−29 4.4 × 102 +3.7 × 102

−3.6 × 102

588015508192165993 0.7715 27 ± 2 2.4 × 103 ± 1.5 × 102 45.09 ± 0.02 1.9 × 102 +38
−31 58+7.1 × 102

−5

588015508195049640 0.7018 63 ± 10 1.35 × 104 ± 4.1 × 103 43.6 ± 0.4 17+16
−8 11+66

−6

588015508195901596 0.7062 28 ± 10 3.3 × 103 ± 1.3 × 103 44.30 ± 0.05 52+10
−8 51+1.8 × 102

−36

588015508202258589 0.7328 2.3 × 103 ± 5.8 × 102 47 ± 2 44.9 ± 0.2 1.5 × 102 +1.1 × 102

−59 3.9 × 102 +2.7 × 102

−3.5 × 102

588015508205273127 0.7995 41 ± 2 5.6 × 103 ± 3.7 × 102 45.07 ± 0.03 1.8 × 102 +39
−31 7.4 × 102 +68

−6.8 × 102

588015508210647058 0.771 21 ± 3 4.2 × 103 ± 1.0 × 103 45.03 ± 0.03 1.7 × 102 +36
−29 1.2 × 102 +6.4 × 102

−71

588015508212089028 0.8121 35 ± 4 4.6 × 103 ± 1.5 × 103 43.8 ± 0.4 22+21
−10 19+80

−13

588015508213989529 0.8119 55 ± 4 2.5 × 103 ± 1.1 × 103 44.85 ± 0.07 1.3 × 102 +35
−26 2.3 × 102 +3.3 × 102

−2.0 × 102

588015508214906936 0.7227 88 ± 5 1.0 × 104 ± 2.8 × 103 44.88 ± 0.03 1.3 × 102 +25
−21 2.2 × 102 +3.5 × 102

−1.7 × 102

588015508457717826 0.8166 46 ± 4 1.2 × 103 ± 1.1 × 103 44.90 ± 0.06 1.4 × 102 +34
−26 68+5.3 × 102

−29

588015508726481000 0.7324 24 ± 4 2.3 × 103 ± 3.9 × 103 44.2 ± 0.2 44+21
−13 65+1.3 × 102

−53

588015508728381656 0.7956 28 ± 2 4.9 × 103 ± 9.2 × 102 45.19 ± 0.03 2.2 × 102 +50
−40 2.0 × 102 +7.8 × 102

−1.3 × 102

588015508729364533 0.8014 32 ± 1 4.1 × 103 ± 3.3 × 102 45.31 ± 0.06 2.6 × 102 +78
−59 8.3 × 102 +3.6 × 102

−5.7 × 102

588015508732510294 0.703 24 ± 1 4.1 × 103 ± 1.3 × 103 45.3 ± 0.3 2.7 × 102 +2.7 × 102

−1.3 × 102 8.8 × 102 +3.5 × 102

−6.2 × 102

588015508739915785 0.7375 21 ± 2 2.5 × 103 ± 5.6 × 102 45.22 ± 0.02 2.3 × 102 +45
−37 65+0.7 × 102

−0.3

588015508748173447 0.7706 31 ± 3 3.9 × 103 ± 1.0 × 103 44.84 ± 0.02 1.3 × 102 +21
−18 5.7 × 102 +0.3

−5.2

588015508752433223 0.705 23 ± 2 3.0 × 103 ± 6.4 × 102 44.98 ± 0.02 1.6 × 102 +29
−24 115.4815+588.1607

−71.4742
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Table 5
(Continued)

Objecta zb EW(Mg ii)/Å c FWHM(Hβ)
1000 km s−1

d log

[
λLλ(5100 Å)

erg s−1

]
RBLR,Kaspi
lightdays

e RBLR
lightdays

f

588015508757151947 0.7991 26 ± 3 3.2 × 103 ± 2.2 × 103 44.90 ± 0.04 1.4 × 102 +29
−23 82+5.4 × 102

−43

588015509273378959 0.8024 30 ± 7 3.9 × 103 ± 2.0 × 103 44.30 ± 0.08 52+13
−10 62+1.7 × 102

−48

588015509274427525 0.8246 32 ± 5 4.1 × 103 ± 1.8 × 103 45.04 ± 0.03 1.7 × 102 +35
−28 1.9 × 102 +5.8 × 102

−1.4 × 102

588015509275803698 0.7189 32 ± 1 5.0 × 103 ± 1.0 × 103 45.446 ± 0.007 3.3 × 102 +66
−55 2.2 × 102 +1.3 × 103

−1.3 × 102

588015509281767465 0.838 47 ± 2 6.9 × 103 ± 1.6 × 103 45.46 ± 0.05 3.4 × 102 +99
−75 3.9 × 102 +1.0 × 102

−2.9 × 102

588015509283930145 0.8222 26 ± 1 2.9 × 103 ± 5.4 × 102 45.12 ± 0.04 2.0 × 102 +45
−36 7.9 × 102 +92

−5.7 × 102

588015509288058920 0.7654 32 ± 1 5.1 × 103 ± 9.8 × 102 45.107 ± 0.008 1.9 × 102 +32
−28 8.5 × 102 +12

−8.0 × 102

588015509288517766 0.7494 33 ± 1 4.8 × 103 ± 4.1 × 102 44.88 ± 0.01 1.3 × 102 +21
−18 1.7 × 102 +4.3 × 102

−1.3 × 102

588015509291532453 0.7013 20 ± 3 2.7 × 103 ± 2.9 × 103 44.2 ± 0.2 43+18
−12 42+1.5 × 102

−30

588015509804875792 0.8272 23 ± 2 3.0 × 103 ± 7.1 × 102 45.1 ± 0.1 1.9 × 102 +79
−53 3.8 × 102 +4.8 × 102

−3.2 × 102

588015509812871367 0.7565 27 ± 6 5.3 × 103 ± 1.6 × 103 44.05 ± 0.08 35+8
−6 28+1.3 × 102

−18

588015509813198910 0.7032 49 ± 1 5.0 × 103 ± 7.1 × 102 45.522 ± 0.005 3.7 × 102 +76
−63 1.3 × 102 +7

−3.0 × 102

588015509815361541 0.7711 53 ± 2 3.7 × 103 ± 6.5 × 102 44.93 ± 0.01 1.4 × 102 +23
−20 4.2 × 102 +2.3 × 102

−3.7 × 102

588015509816213721 0.8112 71 ± 8 6.3 × 103 ± 1.9 × 103 45.05 ± 0.03 1.7 × 102 +38
−31 72+40

−22

588015509818114095 0.7647 41 ± 2 6.5 × 103 ± 7.3 × 102 45.13 ± 0.02 2.0 × 102 +38
−3 1.9 × 102 +7.0 × 102

−1.3 × 102

588015509818310681 0.7586 35 ± 2 5.1 × 103 ± 8.9 × 102 45.08 ± 0.01 1.8 × 102 +32
−27 2.0 × 102 +6.3 × 102

−1.4 × 102

588015509827420352 0.7534 30 ± 4 · · · 43.61 ± 0.4 18+16
−8 7+75

−2

588015510337159227 0.7196 39 ± 2 2.0 × 103 ± 3.7 × 102 45.201 ± 0.009 2.2 × 102 +40
−34 937.5204+65.1546

−874.5104

588015510340632684 0.7078 29 ± 2 3.1 × 103 ± 5.4 × 102 45.07 ± 0.01 1.8 × 102 +32
−27 4.2 × 102 +4.0 × 102

−3.6 × 102

588015510340960369 0.7156 24 ± 2 4.0 × 103 ± 2.8 × 102 45.02 ± 0.07 1.7 × 102 +48
−36 4.0 × 102 +3.5 × 102

−3.5 × 102

588015510355837082 0.7128 35 ± 3 1.2 × 103 ± 2.6 × 103 44.8 ± 0.1 1.2 × 102 +41
−30 2.1 × 102 +3.5 × 102

−1.7 × 102

588015510356689027 0.748 70 ± 17 6.3 × 103 ± 3.3 × 103 44.1 ± 0.2 37+15
−10 76+89

−65

588015510361014492 0.7497 84 ± 40 1.3 × 103 ± 1.2 × 103 44.14 ± 0.04 40+6
−5 42+1.4 × 102

−31

588015510365601830 0.8007 14 ± 2 1.7 × 103 ± 3.9 × 103 44.94 ± 0.08 1.5 × 102 +44
−33 83+5.8 × 102

−42

Notes.
a headobjid from SDSS tables.
b Redshift.
c Rest frame equivalent width of broad line.
d FWHM of broad line.
e Computed from Kaspi relation, in rest frame.
f Own computation from all points within the 68% CI, in rest frame.

whether photometric reverberation mapping is feasible. Having
a method to evaluate such data enables us to apply reverberation
mapping for the first time to large samples of a few hundred
AGNs at far higher redshifts than before.

We set out to obtain individual and ensemble estimates of
the BLR size in quasars, and on that basis explore their MBH.
We did this by means of photometric reverberation mapping,
drawing on the existing data in SDSS S82. Our results show the
power of stochastical broadband reverberation mapping tech-
niques of quasar ensembles, in contrast to classical spectro-
scopic monitoring of individual objects. This enables us to use
available long-term surveys. We present novel relationships be-
tween spectrophotometric parameters allowing one to calculate
ensemble estimates of AGN central black hole masses, com-
puted by an improved reverberation mapping method and car-
ried out on S82 for the first time.

We model the continuum in one band as stochastic Gaussian
process and assume a flux model that describes the other band

with emission line contribution as a scaled version of the pure
continuum band plus a smoothed and displaced version of
the continuum that was generated using a δ function transfer
function. The evaluation is carried out by stochastic methods.
This approach not only interpolates between data points, but also
makes and includes self-consistent estimates, where statistical
confidence limits on all estimated parameters are determined.
It also is able to simultaneously derive the lags of multiple
emission lines.

By generating and evaluating extensive sets of problem-
specific mock data, we made sure that our model sufficiently fits
the continuum light curve and in a second step, the continuum
plus emission light curve in order to solve for the time delay. We
found a method to estimate whether time lags in the range of
the expected can be determined in principle from a given light
curve with respect to its time sampling. This is necessary for
making sure that we can trust our estimates. This also greatly
reduces computation time.
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Figure 7. Marginalized ensemble PDFs for comparison of the delays inferred here to those from the Kaspi relation (40) for different subsamples and emission lines.
For each subsample, the redshift, emission lines, and band used for the continuum are given. (a) Sample 1: z = 0.225–0.291, with i band: Hα, z band: continuum
(29 light curves). (b) Sample 1: z = 0.225–0.291, with r band: Hβ, Hγ (plus some other), g band: continuum (17 light curves). (c) Sample 2: z = 0.555–0.591, with
g band Mg ii, r: continuum (68 light curves). (d) Sample 3: z = 0.592–0.6999, with g-band Mg ii (Fe ii λ2600), r continuum (111 light curves). (e) Sample 4: z =
0.7–0.846, with g-band Mg ii (Fe ii λ2600), r continuum (115 light curves)

In the application to SDSS S82 data, we combine on average
more than 60 epochs of photometric data with one epoch of
spectroscopy. In all bandpasses the accretion disk emission (the
continuum) contributes much of the flux, but in some bands,
the BLR line flux contributes up to 15%. Constraining spectro-
scopic broadband information is provided for the Hα, Hβ, and
Mg ii lines.

We identified the SDSS S82 temporal sampling windows as
a serious issue. Despite the fact that the stochastic approach is
very good in dealing with uneven and sparse time sampling,
the sampling windows make it necessary to pre-select sufficient
light curves before evaluating them. This is necessary because
data usually only exists for 2–3 months within each year.
In addition, we identified suitable redshift ranges to get, at
minimum, one band that is emission-line free and one having
contribution from Hα, Hβ, or Mg ii. For SDSS-like mock data,
we were able to show that the method should work for the
application to individual AGNs, so we can trust in our estimates
for τdelay from SDSS S82 light curves.

We estimated the time delay τdelay for a well-defined sample
of 323 objects spanning redshifts from z = 0.225–0.846.
In detail, we evaluated 29 light curves in the redshift range
z = 0.225–0.291, with i band: Hα, z band: continuum. We
evaluated 68 light curves in the redshift range z = 0.555–0.591
with g-band Mg ii, r: continuum. We evaluated 111 light curves
in the redshift range z = 0.592–0.6999, with g-band Mg ii (Fe ii
λ2600), r continuum. In the redshift range z = 0.7–0.846, we
evaluated 115 light curves with g-band Mg ii (Fe ii λ2600), r
continuum. The Tables 2–5 show detailed information about the
four subsamples and the results of individual objects.

Seventeen light curves out of the redshift range z =
0.225–0.291 were also evaluated with r band: Hβ, Hγ (plus
some other), g band: continuum. From this, we get no sen-
sible results. Even when omitting light curves with clearly
unreliable posterior PDF, the PDF tends to the prior cutoff at
τdelay/τdelay,expected = 4. Also, it is troubling that the Hβ BLR
comes out larger than the Hα BLR, in light of other results
(Bentz et al. 2010). One reason for this could be the mostly
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Figure 8. Comparing our results to Kaspi et al. (2000), Bentz et al. (2013), and Vestergaard (2002): (a) ensemble RBLR/RBLR,Kaspi binned by redshift, (b) ensemble
RBLR/RBLR,Kaspi binned by luminosity, (c) ensemble RBLR/RBLR,Bentz binned by redshift, (d) ensemble RBLR/RBLR,Bentz binned by luminosity, (e) ensemble
MBH/MBH,Vestergaard1 binned by redshift, (f) ensemble MBH/MBH,Vestergaard2 binned by redshift. Bins are colored for the sake of clarity. Each color indicates the same
bin for all diagrams showing binning by z. Each color indicates the same bin for all diagrams showing binning by luminostiy. For z bins, the used bands and their
broad emission lines along with contaminating lines are also given.

weak Hβ, together with contribution from Hγ and O iii λ4959,
λ5007, so our assumption of having most contribution from Hβ
doesn’t hold.

The posterior distribution functions of the fit parameters for
ensembles of these objects where evaluated by multiplying them
for sensible redshift or luminosity bins. As a result, we get an
ensemble scaling relationship for the scaling of the BLR size
as a function of luminosity and redshift. We are also able to
give constraints on the scaling relationship between the central
black hole masses and the luminosity of the AGN. Comparing
our results with comparable published data by Kaspi et al.
(2000), Vestergaard (2002), and Bentz et al. (2013), we find
that the proportionality constant is significantly bigger than
those published before, but S82 data makes the result, and its
implication, tentative.

It is important to note that the L − RBLR and L − MBH
relationships and their quoted uncertainties stem from the
ensemble average of many objects. The uncertainties associated
with individual MBH estimates may be considerably higher.

We have shown that the robustness of our method is limited
by time sampling. Presuming the Kaspi relation with factor one
is true, the τdelay should fall into a region where we can recover
them, as this was one of the selection criteria. Assuming that
the Kaspi relation has to be scaled by a factor—as our results
indicate—the inferred τdelay are no longer falling into regions
of the time sampling that are well covered. In such cases, the
correct inference may occur due to the interpolation, but cannot
be trusted. From further analysis, most of the individual τdelay
fall in regions were less than 50 percent of the time delays are
assumed to be calculated correctly.
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Figure 9. Gray histograms indicate the ensemble-mean observational time lag distribution for the light curves in each redshift bin used to calculate the ensemble
relation; this histogram indicates (see Figure 5) the regime for τdelay where the value can be robustly recovered. The various colored histograms indicate the distribution
of the predicted τdelay from the Kaspi relation scaled by the proportionality factor as we inferred from the data (see Figure 8(a)) in the different redshift bins.
A comparison of the gray and colored histograms shows that, except for perhaps (b) and (e) the S82 sampling is expected to seriously affect the robustness of the
formally inferred time delays. (a) r: Hβ, Hγ , g: continuum, (b) i: Hα, z: continuum, (c) g: Mg ii, r: continuum, (d) g: Mg ii (Fe ii λ2600), r: continuum, (e) g: Mg ii
(Fe ii λ2600), r: continuum.

The formalism developed here should be useful for applica-
tion to future data sets.

As we use constraining single-epoch spectra, an extension
to apply the method to more spectra for given objects may
be interesting. For some AGNs, SDSS provides multi-epoch
spectra, where we have seen that their emission lines vary
significantly in some cases.

Another useful extension would be to add the information
that light-curve properties lead to good τdelay estimate and give
different weights for the ensemble PDF, instead of excluding
some and weighing the remaining equally.

It would be interesting to introduce a wider range of transfer
functions. We derived the formalism for dealing with not only a
δ function but also a Gaussian. However, the Gaussian transfer
function couldn’t be applied here because it cannot be applied
easily to the power-law structure function model for reasons
of non-analytical integrals. For application to a DRW, we
get analytical integrals, but the DRW doesn’t work well for

photometric reverberation of SDSS S82 light curves. For this
reason, the implementation of additional transfer functions like
the top-hat or sawtooth function, as used by some authors, would
be useful. We know that not all parts of an emission line vary.
To deal with this issue, we use the information on the broad
emission line provided by the Catalog of Quasar Properties, in
detail, the line luminosity, FWHM, and rest frame equivalent
with the broad emission lines. It might be feasible to better
include the fact that not all parts of an emission line vary,
since up to now the prediction of equivalent widths from given
(e, s) scaling factors for calculating Lspec. This should be a
minor effect, though, because the line profile looks very similar
between the mean spectrum and the RMS spectrum, where the
RMS is over spectra taken at different times (Kaspi et al. 2000).

Whereas the Catalog of Quasar Properties provides infor-
mation on the broad component of Hα, Hβ, Mg iii, and we use
them, for C iv, only information about the whole line is avail-
able. As no information on the FWHM of the broad component
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of C iv is available from the catalog (Shen et al. 2011), no com-
parison to the third Vestergaard relation (see Equation (7) in
Vestergaard & Peterson 2006) could be done. This might be
carried out with data from upcoming surveys.
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APPENDIX A

THE STRUCTURE FUNCTION AND
THE GAUSSIAN PROCESS

Imagine a set of N measurements mi, with calibrated mag-
nitude or flux measurements all taken in a single bandpass of
a single source. Each measurement mi is taken at a time ti and
has an (presumed known) uncertainty variance σi . The structure
function V (|Δt |) is defined as follows. The expectation value
E[·] for the difference between the observation mi and mj (with
i �= j ) is

E[(mi − mj )2] = σ 2
i + σ 2

j + V (|ti − tj |), (A1)

where the observations are presumed to be (from a measurement
noise perspective) independent, and the structure function V (·)
effectively describes the variance. In the literature, the structure
function has occasionally been defined in terms of the root-mean
square (the square root of the above definition) and sometimes
in terms of the mean absolute differences, which is slightly
different again.

A Gaussian process is characterized by a function describing
the mean measurement m̄(t) (magnitude or flux) as a function of
time t and a function C(t, t ′), describing the covariance between
observations m at different epochs t and t ′. We will assume that
the mean is constant and that the process is stationary, such that
C(t, t ′) ≡ C(t − t ′). The probability of a set of N observations
{mi}Ni=1 is given by that of the N-dimensional Gaussian with
mean m̄ = (m,m, ..., m)T and N × N dimensional covariance
matrix C with elements Cij = C(ti − tj ). It is possible to define
a Gaussian process that generates data in accordance with any
(reasonable) structure function. As the structure function is the
expectation of the squared measurement differences between
observations ti and tj separated by a time Δt , we can write it as
(Rybicki & Press 1992)

V (|Δt |) = E[(m(t) − m(t + Δt))2]

= 2E[(m(t) − E[m])2] − 2E[(m(t)

− E[m])(m(t + Δt) − E[m]] (A2)

and

Vij ≡ 1

2
V (|ti − tj |) (A3)

V∞ = 1

2
V (Δt → ∞). (A4)

The covariance function of the Gaussian process corresponding
to the structure function V with parameters p is then given by
Cij = V∞ − Vij , or expanded

C = C(t, p, σ )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
V∞ + σ 2

1

)
(V∞ − V12) (V∞ − V13) . . . (V∞ − V1N )

(V∞ − V21)
(
V∞ + σ 2

2

)
(V∞ − V23) . . . (V∞ − V2N )

(V∞ − V31) (V∞ − V32)
(
V∞ + σ 2

3

)
. . . (V∞ − V3N )

. . . . . . . . . . . . . . .

(V∞ − VN1) (V∞ − VN2) (V∞ − VN3) . . .
(
V∞ + σ 2

N

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(A5)

To get the effective (observed) variability, the photometric
uncertainty variances σi are added to the diagonal elements
of C. Variability models can therefore be expressed either in
terms of the variance function or equivalently in terms of the
structure function. For example, imagine that the two quantities
mi and mj are not observations of a quasar, but instead random
numbers drawn from an N-dimensional Gaussian,

p(m) = N (m|m̄, C), (A6)

m = (m1,m2,m3, ..., mN )T, m̄ = (m̄, m̄, m̄, ..., m̄)T (A7)

where we have assembled the observations into a column vector
m. N (·|m̄, C) is the general normal or Gaussian PDF, given
mean vector m̄ and a variance tensor C, m̄ is an arbitrary
parameter, 2Vij is the structure function evaluated at time lag
|ti − tj | as defined above. If we make many draws from this
Gaussian, the expectation values of (mi − mj ) and (mi − mj )2

for any pair of measurements mi and mj (with i �= j ) are just

E[(mi − mj )] = 0 (A8)

and
E[(mi − mj )2] = σ 2

i + σ 2
j + V (|ti − tj |), (A9)

which, by design, is equivalent to the description of the structure
function.

Two additional points arise from this description. Although
m does not enter in the prediction of the mean or variance of the
magnitude differences, it does, of course, affect the magnitude.
So it is, in principle, an observational property of the model.
Although V∞ is not measurable, it can be approximated by
evaluating the structure function at a large time lag.

A.1. The Basic Stochastic Approach

The idea behind this approach was developed by Press & Ry-
bicki (1992), Rybicki & Press (1992), and Rybicki & Kleyna
(1994) in order to estimate the best-fit structure function pa-
rameters for a given light curve. Later on this was extended
by Zu et al. (2011) and Chelouche & Daniel (2012) to a
method that enables both structure-function parameter estima-
tion and estimation of the time delay between multiple uneven
sampled light curves. Here, we refer to the method from Zu et al.
(2011) and re-summarize some of its formalism. We present how
we have improved it to do broadband reverberation mapping,
supported by one epoch of spectroscopy to separate continuum
and emission line contribution, as well as their application.
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The intrinsic variability has a covariance matrix S = 〈ss〉,
whereas the noise has a covariance matrix N = 〈nn〉. By
definition, we know that

P (s) ∝ |S|−1/2 exp

(
− sTS−1s

2

)
(A10)

and that

P (n) ∝ |N |−1/2 exp

(
−nTN−1n

2

)
. (A11)

Thus, the probability of the data given the linear coefficients q,
the intrinsic light curve s, and any other parameters of the light
curve model p (the structure function parameters) is

P (m|q, s, p) ∝ |SN |−1/2
∫

dnnS(m − (s + n + Lq))

× exp

(
− sTS−1s + nTN−1n

2

)
. (A12)

After evaluating the Dirac δ function, we complete the squares
in the exponential with respect to both the unknown intrinsic
source variability s and the linear coefficients q.

This determines our best estimate for the mean light curve,

p̂ = SC−1(m − Lq̂) (A13)

with linear coefficients

q̂ = (LTC−1L)−1LTC−1m ≡ CqL
TC−1m. (A14)

C = S + N is the overall covariance matrix of the data and
Cq ≡ (LTC−1L)−1. With these definitions, we can factor the
argument of the exponential into

P (m|q, s, p) ∝ |SN |−1/2

× exp

(
−ΔsT(S−1 + N−1)Δs

2
− ΔqTC−1

q Δq

2
− mTC−1

⊥ m
2

)
,

(A15)

where
C−1

⊥ ≡ C−1 − C−1LCqL
TC−1 (A16)

is the component of the covariance matrix C that is orthogonal to
the fitted linear functions. The variances in the linear parameters
are

〈Δq2〉 = (LTC−1L)−1 ≡ Cq, (A17)

Δs = s − ŝ, (A18)

Δq = q − q̂. (A19)

We are now prepare to marginalize the probability over the
light curve s and the linear parameters q under the assumption
of uniform priors for these variables. When doing so, we find
that

P (m|p) ∝ L(m|p) ≡ |S + N |−1/2|LTC−1L|−1/2

× exp

(
−mTC−1

⊥ m
2

)
, (A20)

where for the exponential model the remaining parameters p are
τ and ω, and for the power-law model A and γ . L represents
the likelihood function we need to maximize in order to find the
most likely combination of those parameters.

Mathematically, the mean light curve is the weighted average
of all process light curves described by the parameter vector p
being statistically consistent with the data, and the variance is
the scatter of these light curves about the mean.

The main advantage of this approach is that it not only
does interpolation between data points, but also estimates
the uncertainties in the interpolation. Figure 10 shows two
typical examples of SDSS S82 quasar light curves fitted by
the stochastic process.

Following Zu et al. (2011), there are two important points to
consider when comparing these light curve reconstructions and
the error snakes defined by the variances to the data points. First,
these are variances in the mean light curve and not the variance
of the data relative to the mean light curve. The latter quantity is
defined only when there is data and so it is ill suited for showing
a continuous light curve. Data points will be scattered relative
to the mean light curve by the combination of the variance in
the mean light curve and uncertainties in the individual data
points. Second, the reconstructed light curve is not an example
of an individual light curve defined by the structure function
parameters of the underlying model, but rather the average of all
light curves defined by the structure function parameters that are
consistent with the observed light curve given its uncertainties.

The variance in the reconstructed light curve is then the
variance of these individual light curves about the mean.
If we generated individual realizations of light curves each
constrained by the data, they would track the mean light
curve and statistically stay inside the error snake defined by
the variances, but would show much more structure on short
timescales and excursions outside the error snakes consistent
with the estimated variances.

This approach can now easily be extended for the purpose of
estimating a time delay τdelay between two (or more) light curves
in order to estimate the size of the BLRs in AGNs. An approach
for reverberation mapping based on this was first outlined by Zu
et al. (2011), and was enhanced in this work to do broadband
reverberation mapping, supported by one epoch of spectroscopy
to separate continuum and emission line contribution, and to use
the power law instead of the DRW.

APPENDIX B

REVERBERATION MAPPING COVARIANCE
MATRIX ELEMENTS

In the case of a δ-function transfer function, one gets the
following equations:

for the power-law model:

1. covariance matrix for autocorrelation of the k band flux:

Cij = Ccc
kk = 〈

f c
k (ti)f

c
k (tj )

〉
= A2

[(
tobs

1 yr

)γ

− 1

2

( |ti − tj |
1 yr

)γ ]
(B1)

2. covariance matrix for the correlation function between k-
band flux and l-band flux:

Cij = C
c,(e+c)
kl = 〈

f c
k (ti)f

ec
l (tj )

〉
= s A2

[(
tobs

1 yr

)γ

− 1

2

( |ti − tj |
1 yr

)γ ]
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Figure 10. Examples of light curve models for two quasar light curves. The light curves are from spectroscopically confirmed quasars of the SDSS Stripe 82 in a
redshift region where the r band is only continuum. They are showing different seasonal gaps. Outliers are excluded when fitting the light curves. The solid lines
in the right panel represent the best-fit mean model light curves from the power-law model. The area between the dotted lines represents the error snake, which
is the 1σ range of possible stochastic models. The error snakes bound to the reconstructed light curve are thinner than the data points because of the additional
measurement error on the data. We also give the best model parameter values along with the confidence intervals (CI). First row: SDSS S82 r band quasar light curve
headobjid = 588015509285437517, observation period: 30.9.2000–28.11.2007 (2614.9 days), fitted with a m̄ = 19.331 mag, A = 0.136 (0.68 CI [0.113,0.165], (0.95
CI [0.099,0.216]), γ = 0.205 (0.68 CI [0.101,0.284], (0.95 CI [0.089,0.393]). Second row: SDSS S82 r band quasar light curve headobjid = 587731185661640908,
observation period: 13.10.2001–28.11.2007 (2236.9 days), fitted with a m̄ = 19.993 mag, A = 0.175 (0.68 CI [0.133,0.234], (0.95 CI [0.110,0.348]), γ = 0.256 (0.68
CI [0.068,0.403], (0.95 CI [0.068,0.627]).

+ e A2

[(
tobs

1 yr

)γ

− 1

2

( |ti − tj + τdelay|
1 yr

)γ ]
(B2)

3. covariance matrix for the autocorrelation of the l-band flux:

Cij = C
(e+c),(e+c)
ll = 〈

f ec
l (ti)f

ec
l (tj )

〉
= s2 A2

[(
tobs

1 yr

)γ

− 1

2

( |ti − tj |
1 yr

)γ ]

+ se A2

[(
tobs

1 yr

)γ

− 1

2

( |ti − tj + τdelay|
1 yr

)γ ]

+ se A2

[(
tobs

1 yr

)γ

− 1

2

( |ti − tj − τdelay|
1 yr

)γ ]

+ e2A2

[(
tobs

1 yr

)γ

− 1

2

( |ti − tj |
1 yr

)γ ]
(B3)

where τdelay is the time delay in years, e is the line response of
the l-band emission line to the flux in the x band, and s is the
continuum response of the flux in the y band to the flux in the k
band.

When using the DRW model instead, one gets the following
equations.

1. Covariance matrix for autocorrelation of the k-band contin-
uum:

Cij = 〈f c
k (ti)f

c
k (tj )〉 = ω2

2
exp

(
−|ti − tj |

τ

)
(B4)

2. Covariance matrix for the correlation function between k-
band flux and l-band flux:

Cij = 〈
f c

k (ti)f
ec
l (tj )

〉 = s
ω2

2
exp

(
−|ti − tj |

τ

)

+ e
ω2

2
exp

(
−|ti − tj + τdelay|

τ

)
(B5)

3. Covariance matrix for autocorrelation of the l-band flux:

Cij = 〈
f ec

l (ti)f
ec
l (tj )

〉 = s2 ω2

2
exp

(
−|ti − tj |

τ

)

+ s e · ω2

2
exp

(
−|ti − tj + τdelay|

τ

)
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+ se
ω2

2
exp

(
−|ti − tj − τdelay|

τ

)

+ e2 ω2

2
exp

(
−|ti − tj |

τ

)
. (B6)

In the case of using a Gaussian as transfer function, we first
carry out the covariance matrix of the cross-correlation between
k-band continuum and l-band line

〈
f c

k (tj )f e
l (ti)

〉 = ∫ ti

t ′=0
dt ′Ψ(ti − t ′)

〈
f c

k (t ′)f c
k (tj )

〉
=
∫ ti

t ′=0
dt ′ΨGauss(ti − t ′)

〈
f c

k (t ′)f c
k (tj )

〉
=
∫ ti

t ′=0
dt ′e

1√
2πσ 2

Gauss

exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]

× 〈
f c

k (t ′)f c
k (tj )

〉
= e

1√
2πσ 2

Gauss

∫ ti

t ′=0
dt ′ exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]

× 〈
f c

k (t ′)f c
k (tj )

〉
(B7)

where erf(z) = 2/
√

π
∫ z

0 exp[−t2]dt
McLaurin series= 2/π (z −

z3/3 + z5/10 − z7/42 + z9/216 − ...). This can be calculated
with the gsl function double gsl_sf_erf(double x).

In addition, we carry out the covariance matrix of the
autocorrelation of the l-band line〈
f e

l (tj )f e
l (ti)

〉
=
∫ ti

t ′=0
dt ′

∫ tj

t ′′=0
dt ′′Ψ(ti − t ′)Ψ(tj − t ′′)

〈
f c

k (t ′)f c
k (t ′′)

〉
=
∫ ti

t ′=0
dt ′

∫ tj

t ′′=0
dt ′′ΨGauss(ti − t ′)ΨGauss(tj − t ′′)

〈
f c

k (t ′)f c
k (t ′′)

〉
=
∫ ti

t ′=0
dt ′

∫ tj

t ′′=0
dt ′′ · e2

2πσ 2
Gauss

· exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]

× exp

[
− (tj − t ′′ − τdelay)2

2σ 2
Gauss

] 〈
f c

x (t ′)f c
x (t ′′)

〉
(B8)

For the power-law model,

〈
f c

k (tj )f e
l (ti)

〉 = e
1√

2πσ 2
Gauss

∫ ti

t ′=0
dt ′

× exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

] 〈
f c

x (t ′)f c
x (tj )

〉

= e
1√

2πσ 2
Gauss

∫ ti

t ′=0
dt ′ exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]
A2

×
(

t
γ

obs − 1

2

( |tj − t ′|
1 yr

)γ )
(B9)

〈
f e

l (tj )f e
l (ti)

〉 = ∫ ti

t ′=0
dt ′

∫ tj

t ′′=0
dt ′′

e√
2πσ 2

Gauss

× exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]

· e√
2πσ 2

Gauss

exp

[
− (tj − t ′′ − τdelay)2

2σ 2
Gauss

] 〈
f c

x (t ′)f c
k (t ′′)

〉

=
∫ ti

t ′=0
dt ′

∫ tj

t ′′=0
dt ′′

e2

2πσ 2
Gauss

· exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]

× exp

[
− (tj − t ′′ − τdelay)2

2σ 2
Gauss

]

· A2

(
t
γ

obs − 1

2

( |tj − t ′|
1 yr

)γ )
. (B10)

Unfortunately, these integrals for the power-law structure
function are not analytical.

When using a DRW structure function, the integrals are
analytical:

covariance matrix of the cross-correlation between the k-band
band continuum and l-band line

〈
f c

k (tj )f e
l (ti)

〉 = e
1√

2πσ 2
Gauss

∫ ti

t ′=0
dt ′

× exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

] 〈
f c

k (t ′)f c
k (tj )

〉

= e
1√

2πσ 2
Gauss

∫ ti

t ′=0
dt ′ exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]
ω̂2

× exp

[
−|tj − t ′|

τ

]

= 1

2
exp

[
σ 2

Gauss − 2kτ (τdelay + tj − ti)

2τ 2

]
ω̂2σGauss

· e

(
erf

[
τdelayτ − wσ 2

Gauss√
2τσ 2

Gauss

]

− erf

[
τdelayτ − wσ 2

Gauss − τ ti√
2τσ 2

Gauss

])
(B11)

with

ω̂ =
√

2ω2

τ
(B12)

and

w =
{

+1, if tj > ti

−1, if tj < ti
(B13)

where per definition tj �= ti .
The covariance matrix of the autocorrelation of the l-band

line

〈
f e

l (tj )f e
l (ti)

〉 = ∫ ti

t ′=0
dt ′

∫ tj

t ′′=0
dt ′′

e√
2πσ 2

Gauss

× exp

[
− (ti − t ′ − τdelay)2

2σ 2
Gauss

]

· e√
2πσ 2

Gauss

exp

[
− (tj − t ′′ − τdelay)2

2σ 2
Gauss

] 〈
f c

k (t ′)f c
k (t ′′)

〉

=
∫ ti

t ′=0
dt ′

∫ tj

t ′′=0
dt ′′

e√
2πσ 2

Gauss

exp

[
− (ti − t ′ − τGauss)2

2σ 2
Gauss

]
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· e√
2πσ 2

Gauss

· exp

[
− (tj − t ′′ − τdelay)2

2σ 2
Gauss

]
ω̂2

× exp

[
−|t ′t − t ′′|

τ

]

= 1

4
· exp

[
−wtj τ

2 + wtiτ

τ 2

]
ω̂2e2

·
(

erf

[
wτdelayτ + σ 2

Gauss√
2τ 2σ 2

Gauss

]

− erf

[
wτdelayτ − wtj τ + σ 2

Gauss√
2τ 2σ 2

Gauss

])

·
(

erf

[
τdelayτ − wσ 2

Gauss√
2τσ 2

Gauss

]

− erf

[
τdelayτ − wσ 2

Gauss − τ ti√
2τσ 2

Gauss

])
(B14)

with

w =
{

+1, if tj > ti

−1, if tj < ti
(B15)

where per definition tj �= ti .
From this, we can calculate the covariance matrix for the

correlation function between the k-band band flux and l-band
flux, and the covariance matrix for autocorrelation of the l-band
flux by inserting Equations (B11) and (B14) into Equations (17)
and (18).

APPENDIX C

TEST DATA

Equipped with a statistical description of quasar variability
(see Section 3), we generate well-sampled mock light curves
in order to (1) test the algorithm for the determination of
the structure-function parameters and later for reverberation
mapping, (2) demonstrate the relationship between our model
parameters and the shape of light curves, and (3) estimate the
systematic effects that the sampling rate and light curve length
have on the fitted parameter for determination of the structure-
function parameter and for reverberation mapping. The later
is especially important because the SDSS S82 data are fairly
sparse.

C.1. Generating Test Data

A continuum light curve is generated using only the two
structure-function parameters and the mean magnitude of the
light curve as input parameters. To apply a time delay τdelay
to the continuum plus emission line light curves, we refer to
our assumption that all emission line light curves are scaled,
smoothed, and displaced (delayed) versions of the continuum
flux light curve, see Equation (11).

For generating the test data, one can choose

1. the structure function; here, a DRW model and a power-law
model are implemented

2. the transfer function Ψ(τdelay); here, a δ function and
Gaussian are implemented

3. scaling factors s, e (instead of the emission line equivalent
width)

4. the bands x and y, multiple emission lines are also possible
5. the time sampling and time windows; this can be chosen

freely and also be inherited from SDSS S82 light curves.

As mock data are generated from e and s, and not with emission
line equivalent width, we replace Equations (37) by

P (e) = 1√
2πδe0

exp

(
− (e − e0)2

2δe02

)
, (C1)

when testing with mock data. The values for e0 and δe0 are set
depending on test, typical e0 ≈ 0.2, δe0 ≈ 0.02.

To make sure that the test data are consistent, samples of
mock light curves are evaluated statistically. When averaging
over a sample of 100 light curves with the same structure
function V, the form of the point cloud |Δm| versus |Δt | should
be represented by

√
V (|Δt |) as a ridge-line. In addition, the

standard deviation SD(|Δm|) should be represented by the
structure function itself, V (|Δt |).

For the purpose of illustrating these effects, an observation
time of 12 yr and observational time sampling of one day
was simulated. The first and last years of the data points are
neglected to avoid potential edge effects, which results in 10 yr
of observational time. As shown in Figure 11, for both the
power law and the damped random walk structure functions,
the form of the point cloud |Δm| versus |Δt | is represented quite
well by

√
V (|Δt |) as a ridge-line, and the standard deviation is

represented by the structure function itself, V (|Δt |). In addition,
it is plausible that about 63 percent of points of |Δm| versus
|Δt | will be under the line (with the fraction of data being
within 1σ in a Gaussian distribution). As a result, we know
that the generated mock light curves follow our assumptions
about structure functions. Because of this, we can be sure that
such mock light curves can be used safely to test our algorithms
for estimating structure-function parameters and reverberation
mapping.

C.2. Results from Test Data

In this section we show results from mock data, which lead us
to an understanding of the behavior of the reverberation mapping
algorithm.

The structure-function parameter function is estimated by
evaluating Equation (A20) as described in Section 3. This
can be carried out on a parameter grid or by using a MCMC
method. Using a parameter grid is not practical because it is
time consuming, but functions for testing issues and to show the
likelihood surface.

We found that the method is sufficient for estimating structure
function parameters and fitting light curves, as even with
sparsely sampled mock data it is able to recover the input values
within about a 68% confidence interval or better. We also see
that the posterior distribution in the parameter space, like the
likelihood surface itself, is smooth, so the MCMC is able to
sample the posterior distribution.

During first tests on estimation of the time delay τdelay,
uniformly sampled mock data were used. Using uniformly
sampled light curves spanning a time longer than the input τdelay,
this delay can be recovered with a precision of one over the
sampling frequency. This holds even when the flux contribution
is about 5% (this is the expected value for many of the SDSS
S82 light curves, whereas some have a flux contribution up to
20%). For more realistic tests, we have taken typical SDSS S82
time sampling and applied it to mock light curves. As expected,
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Figure 11. Light curve statistics over |Δtij | for 100 simulated power-law light curves, where i,j are the individual observations; (a) black curve: averaged |Δmij |, gray
curve:

√
V (|Δt |), (b) black curve: standard deviation of |Δmij |, gray curve: V (|Δt |).
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Figure 12. Non-uniform sampled simulated light curve and its correlogram, input τdelay = 1 yr is recovered as τdelay = 3.33 yr. Band k contains continuum only, band
l contains continuum and emission line.

the approach is sensitive to time sampling, but not as much as
classical approaches such as CCF and ICCF. For an example
plot, see Figure 12.

We found that we can easily estimate whether a given time
sampling enables us to find a time delay in an expected range.
The tool used for this is the histogram of observational time lags
provided by the light curve in question. Details on this can be
found in Section 5.

Despite the robustness of the stochastic approach, results must
be handled with care. Even when the algorithm is able to recover
the input τdelay, we found that for sparsely sampled data the
posterior distribution often turns out to be much more flat than
for estimating the structure-function parameters. Additionally,
the periodic pattern of higher and lower likelihood can be found
in mock and real data. This pattern roughly reproduces the
pattern in the histogram of observational time lags. As a result,
we constrain the τdelay by Equation (24) and set a prior on
(e, s) based on spectroscopic data. For details, see Section 5,
Equation (27)–(37).

If those priors are applied, this periodic pattern only appears
in some cases. When it appears, it is only weak. Most posterior

distribution functions are smooth and round, whereas others
have a stretched appearance or show a tail, which is a remnant
of the periodic pattern. This demonstrates the importance of
choosing a sensible prior.
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