PLUTO  4.0
 All Data Structures Files Functions Variables Enumerations Macros Pages
hancock.c File Reference

MUSCL-Hancock predictor step. More...

#include "pluto.h"

Detailed Description

Use time-extrapolation to compute interface states and cell-centered value at the half-time step, $ V_{i,\pm}^{n+\HALF} = V_{i,\pm}^n + \partial_t V \Delta t^n/2 $

This is done using the one-dimensional primitive form ot the equations for the HD, RHD and MHD modules since we have at disposal $ \partial_t V = -A\partial V_x + S $.

Conversely, for relativistic MHD, we adopt the one-dimensional conservative form of the equations (conservative Hancock predictor) and compute the primitive values using $ \partial_t V \approx (V^{n+\HALF}_i-V^n_i)/(\Delta t/2) $. This requires taking the following steps:

Author
A. Mignone (migno.nosp@m.ne@p.nosp@m.h.uni.nosp@m.to.i.nosp@m.t)
Date
Oct 1, 2012